Notes

BASIC			High level language interpreter.

		BASIC[ff[V]][,mm][,command]<ENTER>

			ff = number of file buffer areas allocated (0‑15) default 3
			V = user defined random I/O flag
			mm = memory protect address
			command = Any valid SUPERBASIC command

If any of the optional parameters are specified a mandatory space is required after BASIC. A comma is interpreted as a separator for a multiple command.

EXAMPLES:
		BASIC<ENTER>

SUPERBASIC loads with 3 file buffer areas allocated (289 bytes for each file buffer area) and RAM available up to TOPMEM.

		BASIC 4<ENTER>

SUPERBASIC loads with 4 file buffer areas allocated and RAM available up to TOPMEM.

		BASIC 2V,60000,RUN"PROG1/BAS"<ENTER>

SUPERBASIC loads with 2 expanded file buffer areas allocated (545 bytes each), capable of handling user defined record lengths (1 to 256), RAM from 60000 up is not available to SUPERBASIC, and the program PROG1/BAS is loaded by SUPERBASIC and executes starting with the first program line. If you are expecting to use direct‑access files with a logical record length other than 256, then you must specify the V parameter.

The MODEL I and MODEL III versions have an enhanced version of BASIC - BBASIC - for program development. BBASIC is SUPERBASIC with BOSS. All the features of BASIC are included in BBASIC.

The MODEL 4 and ESOTERIC versions have a high resolution (Hi-RES) version of BASIC – BASICH - to use with either the Radio Shack and/or Micro-Labs high resolution board. The enhanced features are only available with the additional hardware. All the features of BASIC are included in BASICH.

BASIC *		Recover SUPERBASIC program.

		BASIC *<ENTER>

This command assumes SUPERBASIC was previously loaded into your system, you now have the 'MULTIDOS' prompt, and you want to return to SUPERBASIC with the previous program unchanged with arguments intact. CAUTION: You cannot go from SUPERBASIC to DOS, execute commands such as DIR and then use BASIC * to return. In such cases you should use the CMD"fffff" command from within SUPERBASIC. If you were in BBASIC or BASICH, you must use BBASIC * or BASICH * to recover your program.

MODEL I and MODEL III: If the return to SUPERBASIC is successful, then 'Continue?' appears. Enter 'Y' if you want the program to continue.

MODEL I and MODEL III
BASIC !		Capture a BASIC program from RAM.

		BASIC !<ENTER>

This unique command transfers a non-SUPERBASIC program in RAM to SUPERBASIC, sets file buffer area to zero, and maintains protected memory. This command usually follows a reset with MULTIDOS in drive zero. I recommend that you hold down the <ENTER> key to suppress any AUTO command. NOTE: You should use a MULTIDOS system diskette that does not have an invincible AUTO command.

MODEL I and MODEL III
BASIC #		Recover a LEVEL II or MODEL III BASIC program from RAM.

		BASIC #<ENTER>

MODEL I/III MULTIDOS uses CMD”W” from within SUPERBASIC instead of BASIC2 in DOS to enter LEVEL II/MODEL III BASIC. And, if a BASIC program is in SUPERBASIC, then the SUPERBASIC programs is transferred to LEVEL II/MODEL III BASIC via CMD”W”. Once in LEVEL II/MODEL III BASIC (to run the BASIC program), you key SYSTEM<ENTER> and answer the *? Prompt with /16480<ENTER> to re-boot a MODEL I/III MULTIDOS system diskette in drive zero. I recommend that you hold down the <ENTER> key to suppress any AUTO command. NOTE: You should use a MULTIDOS system diskette that does not have an invincible AUTO command. At the DOS command prompt key BASIC #<ENTER>. Now the LEVEL II/MODEL III BASIC program is in SUPERBASIC.

Overlay location of BASIC commands and statements that are not in [B]BASIC[H]/CMD:

	Command
or
Statement
	Model I and Model III
	MAX-80, Model 4, and ESOTERIC

	; or @
	CREF/BOL
	CREF/BOL

	B
	n/a
	RESOLVE/BOL

	F
	UTIL/BOL
	UTIL/BOL

	G
	EDIT/BOL
	EDIT/BOL

	M
	UTIL/BOL
	UTIL/BOL

	N
	UTIL/BOL
	UTIL/BOL, RENUM/BOL

	O
	RENUM/BOL
	RENUM/BOL

	CMD"C"
	UTIL/BOL
	UTIL/BOL

	CMD"D"
	Debug/DOL
	Debug/DOL

	CMD"O"
	UTILA/BOL
	n/a

	CMD"P"
	PACK/BOL
	PACK/BOL

	CMD"Q"
	UTIL/BOL or UTILA/BOL
	SORT/BOL

	CMD"U"
	UNPACK/BOL
	UNPACK/BOL

	CMD"V"
	UTIL/BOL
	UTIL/BOL

	CMD"W"
	PACK/BOL
	n/a

	CMD"X"
	UTIL/BOL, EDIT/BOL, RENUM/BOL
	UTIL/BOL, EDIT/BOL, RENUM/BOL

	CMD"Y"
	n/a
	UTIL2/BOL

	CMD"fffff"
	UTIL/BOL or UTILA/BOL
	UTIL/BOL

	SORT
	n/a
	SORT/BOL

The following applies to all models unless specifically restricted by highlighting the applicable model(s) in blue. ESOTERIC BASIC is named ESOBASIC; and, ESOBASIC is similar to MODEL 4 SUPERBASIC.

SINGLE KEYSTROKE COMMANDS
		<.>		(Period)			=	list current line
		<,>		(Comma)				=	edit current line
		</>		(Slash)				=	list "Break in" line
		<>		(up arrow)		=	list previous line
		<>		(down arrow)	=	list next line
		<SHIFT>						=	list first program line
		MODEL I and MODEL III
		<SHIFT>						=	list last program line
		MAX-80, MODEL 4, and ESOTERIC
		<SHIFT>						=	list last program line

Single keystroke commands are recognized only in the first position after the command prompt, >, appears. MODEL I and MODEL III: If you have pressed any other key(s), you must press <BREAK> instead of <> to position the cursor to the first position. MAX-80, MODEL 4, and ESOTERIC: You may use <> to position the cursor to the first position.

SINGLE CHARACTER COMMANDS
				 ; = cross-reference (MODEL 1 and MODEL III)
				 @ = cross-reference (MAX-80, MODEL 4, and ESOTERIC – CUSTOM/CMD can make it ;)
				 A = AUTO						 {the MODEL I and MODEL III also have reserved word AUTO}
				 B = resolve laBels
				 C = CONT
				 D = DELETE					 {the MODEL I and MODEL III also have reserved word DELETE}
				 E = EDIT						 {the MODEL I and MODEL III also have reserved word EDIT}
				 F = Find ASCII string
				 G = Global editor
				 I = Insert							{= A[UTO] current line +1, 1}
K"filespec = KILL"filespec"			{see KILL}
				 L = LIST
L"filespec = LOAD"filespec"			{see LOAD}
				 M = Move a single line
				 N = duplicate a line. i.e., make a New line like an existing line
				 O = renumber (re-Order line sequence)
				 P = list Page					{= CLS:LIST current line – current line +x}	
				 R = Run program
R"filespec = RUN"filespec"			{see RUN}
S"filespec = SAVE"filespec"			{see SAVE}

The above commands are terminated with <ENTER> and are not case sensitive. i.e., either g<ENTER> or G<ENTER> invokes the global editor.

@			(MAX-80, MODEL 4, and ESOTERIC) Cross reference arguments and integers.
;			(MODEL 1 and MODEL III)

			@[*|$][<tar>]<ENTER>
			@[*|$][#<reserved word>]<ENTER>

		* =	multiple reference listing to the display.
		$ =	multiple reference listing to the printer.
	tar =	The reference target {not case sensitive @a is the same as @A}:
1) An integer number (between 0 and 9999999) that may be a line number and/or a constant in the program.
2) The @ character.
3) A one or two character variable name without a type suffix.
4) A reserved word if preceded by a # symbol.

Without the multiple reference specifiers, all the line numbers that contain <tar> are displayed. After a reference target has been established, the reference lines are displayed sequentially with each additional press of @<ENTER>.

If the * or $ option is used with an <tar>, then a reference listing is produced starting with the target and proceeding in ascending order. Use of the * or $ option without an <tar> target results in a reference listing of all integer numbers and variables. If the reference listing is requested in the form @*#<ENTER>, a listing of reserved words is produced. The reserved word listing is produced in token value order not alphabetical order.

To pause during a reference listing, press <SHIFT>@. To resume the listing, press any key except <SHIFT>@. To stop the listing, press <BREAK>.

When the line number containing the reference is displayed, it may be followed by one or more of the following modifiers:

				/n where n = the number of references to the target in the line.
				/$n the variable contains the string type declaration tag $.
				/%n the variable contains the integer type declaration tag %.
				/!n the variable contains the single precision type declaration tag !.
				/#n the variable contains the double precision type declaration tag #.
				(n the variable is used as an array variable in this line.

					If n is has a value of one it is not displayed.

EXAMPLES:
		@*<ENTER>
		All integer, @, and variable references are displayed on the screen.

		@K<ENTER>
		All line numbers that contain the variable K are displayed on the screen. The total occurrences of the variable K is printed on a new screen line, after the line numbers, following a >.

			@K
						K		11/3 36/5 133/6 135 136/5 138/2 181/2 202/4 203
								>29			{K occurs 29 times}

@$G<ENTER>
		All arguments starting with G and continuing through ZZ will have their references directed to the video and line printer. The printer output is suppressed if the printer is routed to a file.

		@#PRINT<ENTER>
		All line numbers that contain the reserved word PRINT are displayed on the screen. The total occurrences of the reserved word PRINT is printed on a new screen line, after the line numbers, following a >.

		@$#<ENTER>
		All reserved words will have their references directed to the video and the line printer. The printer output is suppressed if the printer is routed to a file.

A			Automatic line numbering. {MODEL I/III also have reserved word AUTO.}

			A[start][,increment]<ENTER>

					start = starting line number, default 10
					increment = the number between each line, default 10

The A command prints a line numbers waiting for you to provide the BASIC line data terminated with <ENTER>. If no data is provided for a line:
	MODEL I and MODEL III:
	SUPERBASIC does not insert the line into BASIC text area.
	MAX-80, MODEL 4, and ESOTERIC:
	SUPERBASIC leaves the blank line number in the BASIC text area.

After each line is entered, this command adds the increment to the previous line and waits for your input. If you have no additional data to input, press <BREAK> to exit the A command.

MODEL I and MODEL III:
If start is followed by a comma and increment is not specified, then the last increment specified in the previous AUTO command is used. If a line exists for the new line number, then a * appears immediately behind the line number. e.g., 120* To avoid overwriting this line number, press <BREAK>. Keying <ENTER> immediately after the asterisk will erase the line number and generate the next line number.
MAX-80, MODEL 4, and ESOTERIC:
If start is followed by a comma and increment is not specified, then only start line number is generated. If a line exists for the new line number, then a ! appears immediately behind the line number. e.g., 120! To avoid overwriting this line number, press <BREAK>. Keying <ENTER> immediately after the exclamation mark will blank the line and generate the next line number.

The A command changes a program.

MAX-80, MODEL 4, and ESOTERIC
B			RESOLVER ‑ Resolve labels {changes program, and CLEARs 50}

			B[*]<ENTER>

B<ENTER> is for error checking. B*<ENTER> resolves the labels.

RESOLVER resolves, changes to line numbers, all labels in the resident BASIC program. In addition, all label definitions are removed. If a reference error is in the resident BASIC program, RESOLVER displays all of the errors it finds and does not resolve any labels. Error types are:

				lllll/nnnnn/U					Line number lllll has line nnnnn undefined.
				lllll/"label"/U				Line number lllll has label "label" undefined.
				lllll/S								Line number lllll contains a syntax error.
				lllll/O								Line number lllll contains a line number > 65535.

EXAMPLE:
			20/"JILL"/U

Line 20 has a reference to the label "JILL" and there is no LABEL"JILL" in the resident BASIC program. The reference may be in the form of: GOTO "JILL", GOSUB "JILL", ...THEN "JILL", ...ELSE "JILL", RESUME "JILL", ON n GOTO "JACK","JILL", IF ERL = "JILL", etc.

C			Continue program execution after STOP {MODEL I/III also have reserved word CONT.}

			C<ENTER>

C resumes program execution if the program was stopped by pressing <BREAK> or the program encountered a STOP or END statement. Program resumption is not valid if the program is changed. Commands and statements that change a program are:

 1. A<ENTER>
 2. B[*]<ENTER>
 3. a successful D[ln1]-[ln2]<ENTER>
 4. E and <ENTER>. To exit Edit and return to command mode without changes press <Q>
 5. G<ENTER>
 6. I[ln0]<ENTER>
 7. a successful Mln1,ln2<ENTER>
 8. a successful Nln1,ln2<ENTER>
 9. O[new][,inc][,start][,end]<ENTER>
10. CMD”C”<ENTER>
11. processed CMD”P”<ENTER>
12. CMD”U”[,C]<ENTER>
13. CMD”X”<ENTER>
14. CHAIN var$ (without the B option)
15. CLEAR {see CLEAR for differences between MODELS I/III and MAX/MODEL4/ESOTERIC}
16. LOAD var$ (without the B option)
17. MERGE var$
18. NEW
19. RUN var$ (without the B option)

D			Delete program line(s) {MODEL I/III also have reserved word DELETE.}

				INPUT 							LINES DELETED
				D<ENTER>							the current line
				D ln1 ‑ ln2<ENTER>		lines from ln1 to ln2
				D ‑ ln2<ENTER>				the first line to ln2
		MAX-80, MODEL 4, and ESOTERIC:
				D ln1 ‑<ENTER>				lines from ln1 to the end of the program
				D ‑<ENTER>						the entire program

If ln1 does not exist, then the first line deleted is the next highest line greater than ln1. MAX-80, MODEL 4, and ESOTERIC: If ln2 does not exist, then the last line deleted is the highest line less than ln2. At least one line must exist between ln1 and ln2; otherwise, an "Improper parameter used." error results. MODEL I and MODEL III: ln2 must exist; otherwise, an "Improper parameter used." error results.

Note: In SUPERBASIC, entering a line number LISTS the line and does not delete the line.

The D command changes a program.

E			Edit a single program line {the MODEL I and MODEL III have reserved word EDIT}

			E[ln]<ENTER>

				ln = program line to modify ‑ default the current line

					NOTE: E<ENTER> is the same as E.<ENTER>.

The E command changes a program.

F			FIND ‑ Find ASCII characters including ones in remark statements and quoted text

			Ftar<ENTER>

The F command prints the line numbers for all occurrences of tar in the resident BASIC program. If more than one occurrence is in a line, then a / is printed followed by the number of occurrences. Both leading and trailing spaces are significant.

EXAMPLE:
				F:<ENTER>
				10 20/5 50 70 90/3

	The colon, :, character is in line 10 once, line 20 five times, line 50 once, line 70 once, and line 90 three times.

G			Global editing (GEDIT) the resident BASIC program. {changes program}

			G<ENTER>

GEDIT makes mass changes to the resident BASIC program, by performing the following:

	Change all or part of argument.
	Change all or part of constants, data list items, or strings.
	Change CHR$(xxx) into packed strings.
	Append adjacent line numbers into one long line.
	Split one long line into two shorter ones.
	Change reserved words.

GEDIT ‑ General changes

				G<ENTER>

The screen clears and the following prompt is displayed:

		 'L T

				T = _'

This is the target entry mode. The rules for the target are discussed after the replacement is defined. After a target is entered, you are prompted to enter Line A, which is the first line to search and has a default value of the first program line. The next prompt is 'Line B', which is the last line to be searched and has a default value of the last line in the program. Line A and Line B limit changes to a specific range of program lines. The next prompt 'R =' is the replacement entry mode for the target specified. To re‑enter an erroneous target, press <ENTER> for the replacement, and GEDIT returns to the target entry mode. To delete all occurrences of a target, use <SHIFT><@> as the replacement.

		 'L		 T

				T = A
				Line A , Line B
				R = H
				Use it?'

Finally, GEDIT prompts 'Use it?'. This is the last chance to correct an error in the entries. An <N> response puts the GEDIT in the replacement mode, and a <Y> response starts GEDIT to search the program for the target and make the changes. The screen shows the line number being searched under the L and the last line number where a target was found under the T. When GEDIT has made all of the changes, the total changes are displayed. To exit from GEDIT, at this point, press <BREAK>; otherwise, any other key restarts GEDIT.

If the replacement is larger than the target, the program increases in size by that difference for each occurrence. If you run out of memory, an “Insufficient MEMORY in nnnnn” error message is displayed, and all changes are made up to the point (somewhere in line nnnnn) where memory was insufficient.

Rules for target:
In the following examples, T is the target, R is the replacement and ==> means is changed to.

EXAMPLE:	Change all occurrences of the variable B to F

				T = B and R = F

	B==>F, AB==>AF, BA==>FA, BB==>FF, B$==>F$, AB$==>AF$, CA is not changed.

To change only a single character variable, while leaving multi‑character arguments with the same letter unchanged, enclose the target character in single quotes, e.g., 'X'.

EXAMPLE:	Change all occurrences of a single A to G

				T = 'A' and R = G

	A#==>G#, A$==>G$, A$(1)==>G$(1), A!(A)==>G!(G), A%(AA)==>G%(AA) ── note that (AA) was not changed.

To change only the first character of a multi‑character variable, enter the target character followed by a single quote, e.g., X'.

EXAMPLE:	Change all occurrences of the first A to H

				T = A' and R = H

	AA==>HA, AB==>HB, AC==>HC, QD is not changed, AE==>HE, AA$==>HA$, BA$ is not changed.

To change the second or greater character of a multi‑character variable, while leaving the first character unchanged, precede the target character with a single quote, e.g., 'X.

EXAMPLE:	Change all occurrences of the second A to I

				T = 'A and R = I

	AA!==>AI!, BA==>BI, AA$==>AI$, A$(AA)==>A$(AI), A is not changed, AX is not changed.

To change a target that is enclosed in quotation marks, precede the target with the $ sign.

EXAMPLE:	Change all E in strings to Z

				T = $E, and R = Z.

	"ABCDE"==>"ABCDZ", TE is not changed, "EASY"==>"ZASY"

MAX-80, MODEL 4, and ESOTERIC
The <WC> character is used in any target position if you don't care what's in that target position. For the replacement, the <WC> character leaves that position unchanged. e.g., T = <WC>T, and R = <WC>Q means change all arguments ending with T to now end with Q. NOTE: <WC> is not available with BASICH/CMD.

GEDIT ‑ Reserved word changes
GEDIT can change reserved words, such as PRINT to LPRINT. You must be careful, however, as lowercase is not acceptable. Under SUPERBASIC as each line is entered and/or edited, it is processed through a buffer. This buffer looks for reserved words and changes them to a one byte code. It also converts all arguments to uppercase. Do not use lowercase for reserved words and/or arguments because GEDIT does not process changes through this buffer. A syntax error will occur at run time. If the target is a reserved word and/or the arithmetic operators +, ‑, *, /, [, >, =, or <, then bracket the target with the < and > characters, e.g., <TAB(>, <‑>, <PEEK>, </>, <[>, <PRINT>, <=>, <<>, etc.

GEDIT ‑ Building compressed strings
Programs containing many CHR$(xxx)+CHR$(xxx) statements, can be shorten by building compressed strings. To build a compressed graphics string in place of a CHR$(xxx) type lines, enter the + character for the target. To build a compressed string with space compression codes, enter the * character for the target. This results in faster execution and more free memory. As an example, the line:

				10 A$=CHR$(191)+CHR$(129)+"X"+CHR$(176)

requires 32 bytes of memory. After GEDIT builds a compressed string, the line would be:

				10 A$="..X."

where the "." represents a graphic character. The new length would be 14 bytes, or more than a 50% saving of space. The CHR$(xxx) cannot contain blanks within the parentheses, i.e., CHR$(191) is not changed.

EXAMPLES:

	(1)	+ 			Changes 210 B$=CHR$(131)+"X"+CHR$(176)
							to			210 B$=".X."												{"."=graphics}

	(2)	*				Changes 337 PRINT CHR$(204)+"TEST"
							to 337 PRINT " TEST"

	(3)	+ Followed by *
							Changes 400 A$=CHR$(178)+CHR$(204)+CHR$(190)
							to 400 A$=". ."

For those who want to change any CHR$(xxx) to a one byte value, key an = after the + or * to adjust the xxx value down by 128. i.e., *= compresses CHR$(064) through CHR$(127). Note the required '0' before the '64'. GEDIT requires three-digit values. And do not compress a CHR$(000) [leave it as CHR$(0) and GEDIT will not change it].

GEDIT ‑ Appending line numbers
GEDIT can append a program line to the preceding line in a program, disregarding references to the line. As an example, if a program originally contains lines 1,2,3,4, and 5, and you append line 3 to line 2, an error would result if line 5 contains GOTO 3 and you ran the program that executes line 5. Also do not append to a line which contains an open quote (10 A$="THIS IS). Close the quote first, then append (10 A$="THIS IS").

GEDIT's append can create lines greater than 255 bytes in length, that execute properly, but cannot be completely listed on the screen and/or edited. Use CMD"U" to separate the lines. To append, respond with the / character and the line number to be appended as the target.

EXAMPLE:
				10 A$="TEST #"
				20 PRINT A$

To append the above two lines, the target is /20. The result is one line:

				10 A$="TEST #":PRINT A$

GEDIT ‑ Splitting lines
GEDIT can split a program line, containing two or more BASIC instructions, into two lines. The new line number can be any number greater than the line to be split. However, if you assign a new line number greater than line number of the following line, run time errors will occur if the program has a references to the in between line. As an example, if a program contains lines 10, 20, 30, 40, 50, and 60, and you split line 20 into lines 20 and 45, lines 30 and 40 are not found by a reference instruction such as GOTO 30, GOSUB 40, etc. However, if the program flow is such that SUPERBASIC would normally process the next statement after the new lines 20 and 45, lines 30 and 40 will be processed. SUPERBASIC would, in the absence of any branching instructions, process lines 20, 45, 30, 40, and 50 in that order.

The split point must be directly behind a colon (:) in the program line. To split a line, enter the target in the form ‑ttt, where ttt is the target for the split. If the target is a reserved word such as PRINT, enclose the target with < and > signs. If no target is specified, then the line is split at the first occurrence of a colon. Line A now represents the line number to be split and line B represents the new line number.

EXAMPLE:
				10 A$="TEST #":PRINT A$"

	To split the above line, T = ‑, Line A = 10, Line B=15. The result is:

				10 A$="TEST #"
				15 PRINT A$

EXAMPLE:
				30 A$="ABCDE":PRINT A$:B$="FGH":PRINT B$

	To split the above line at :PRINT B$, T = ‑<PRINT> B$, Line A = 30, and Line B = 35. The result is:

				30 A$="ABCDE":PRINT A$: B$="FGH"
				35 PRINT B$

NOTE: Use of 'manual' appends and splits may change program's logic.

I			Automatic line numbering {changes program}

			I<ENTER>
			I[ln0]<ENTER> {MAX-80, MODEL 4, and ESOTERIC}

The I command presets the A command with the current line +1 as the starting line, and the increment to 1. MAX-80, MODEL 4, and ESOTERIC: You can put a line number after the I and this line number supersedes the current line. i.e., I 23 is the same as A 24,1

L			List program line(s) onto display.

				INPUT 							LINES LISTED
				L<ENTER>								the current line
				L ln1 ‑ ln2<ENTER>			lines from ln1 to ln2
				L ‑ ln2<ENTER>					the first line to ln2
				L ln1 ‑<ENTER>					lines from ln1 to the end of the program
				L ‑<ENTER>							the entire program

If ln1 does not exist, then the first line listed is the next highest line greater than ln1. If ln2 does not exist, then the last line listed is the highest line less than ln2. Note: In SUPERBASIC, entering a line number LISTS the line and does not delete the line.

M			Move a single program line {changes program}

			M ln1,ln2<ENTER>

				ln1 = line number to be moved
				ln2 = location ln1 is moved to

The M command relocates ln1 to ln2, deleting ln1, and inserting it as ln2. If ln2 existed prior to this command it is replaced by ln1. The . (period) may be used for ln1 and/or ln2 to refer to the current line. The references to the moved line are not updated. If you want to move a group of lines and/or update references to a single line, use the renumber command, O.

N			Duplicate program line(s) {changes program}

			N ln1,ln2<ENTER>

				ln1 = line number to be duplicated
				ln2 = location where ln1 is duplicated

The N command duplicates ln1 as ln2 while leaving ln1 intact. If ln2 existed prior to this command, it is replaced by ln1. The . (period) may be used for ln1 and/or ln2 to refer to the current line. References remain with the original line ‑ ln1.

MAX-80, MODEL 4, and ESOTERIC
The N command can duplicate a group of lines, provided there is no overlap.

		N ln1-ln2,ln3<ENTER>

This command duplicates lines from ln1 through ln2 starting with ln3 and incrementing by one. i.e., the first line of duplicate text is ln3, the second line is ln3+1, the third line is ln3+2, etc. In this construct, ln3 cannot exist. References are not updated because the original lines remain. 'Sequence overlaps.' is displayed if ln3 exists or if there is insufficient sequence space between ln3 and the next line in the program. The lines are duplicated; however, they are placed at the end of the program. You can renumber the whole program to create the sequence space then renumber again to move the program lines. References are not updated because the original lines remain.
NOTE: This N command uses RENUM/BOL.

O			RENUMBER ‑ Renumber the resident BASIC program. {changes program, and CLEARs 73}

			O[nnn][,iii][,sss][,eee]<ENTER>

				nnn =	The first line number to be assigned to a renumbered line. nnn has a default value of 10.
				iii =	The increment to be used in renumbering. iii must be greater than 0, and has a default value of 10.
				sss =	The starting line number in the original program where renumbering is to start. sss has a default value of 0. This is the first line renumbered.
				eee =	The ending line number in the original program where line renumbering is to stop. This is the last line renumbered. eee must be => sss and has a default value of 65529 for the MODEL I and MODEL III. For the MAX-80, MODEL 4, and ESOTERIC the default value is 65534; and, RENUMBER does not renumber line 65535.

RENUMBER checks for missing and/or invalid line numbers in a program, recovers a NEWed program, and renumbers all or part of a program. RENUMBER displays single letters to indicate the status of renumbering: C = checking, R = renumbering, and M = moving. An E indicates error checking only. There is no status indicated when recovering a program immediately after a NEW.

Error types are:
				lllll/nnnnn/U					Line number lllll has line nnnnn Undefined.
				lllll/S								Line number lllll contains a Syntax error.
				lllll/O								Line number lllll contains an Overflow line number.

For error checking only or to recover a program immediately after a NEW, key o<ENTER>.

EXAMPLE:
				20/9/U

Line 20 has a reference to line 9 and there is no line number 9 in the resident BASIC program. The reference may be in the form of: GOTO 9, GOSUB 9, ...THEN 9, ...ELSE 9, RESUME 9, ON n GOTO 8,9, IF ERL = 9, etc.

RENUMBER checks your program for errors before renumbering. If any errors are found they are displayed and the program is unchanged.

EXAMPLE:
				10 PRINT "TEST"
				20 GOTO 290
				30 INPUT A
				40 ON A GOTO 10,20,,60,70
				50 GOTO 10
				60 PRINT A
				70 PRINT A*2
				80 GOTO 70000
				90 END

	Any attempt to renumber this program, produces:

				20/290/U 40/S 80/O

	This tells us line 20 has a reference to line 290 that is Undefined, line 40 has a Syntax error (the double comma between 20 and 60), and line 80 has an Overflow line number (70000). After changing 290 to 90, 70000 to 10 and removing the extra comma, the command o50,1,50,69<ENTER> would generate the following program:

				10 PRINT "TEST"
				20 GOTO 90
				30 INPUT A
				40 ON A GOTO 10,20,51,70
				50 GOTO 10
				51 PRINT A
				70 PRINT A*2
				80 GOTO 10
				90 END

	This program needs a little help to do anything meaningful. Let's renumber this program so that the INPUT statement in line 30 gets processed. This is accomplished by MOVING lines 30 to 70 inclusive to less than 20. Lets key in o11,1,30,70<ENTER>, and the results is:

				10 PRINT "TEST"
				11 INPUT A
				12 ON A GOTO 10,20,14,15
				13 GOTO 10
				14 PRINT A
				15 PRINT A*2
				20 GOTO 90
				80 GOTO 10
				90 END

As long as newly generated line numbers do not overlap the original text lines, the new lines may be placed anywhere in text. When RENUMBER moves text, an 'M' is displayed to indicate a move is taking place. If the amount of the program to move is greater than the available memory, then RENUMBER takes as many moves as necessary to complete the move – indicated by multiple 'M's.

P			List a page of program lines

			P[ln]<ENTER>

The P command lists lines, starting with the line equal to or higher than ln, until two screen lines are available. Subsequent P<ENTER>'s continue to list the balance of the program starting with the last line previously listed until the last line is listed. After the last line is listed, P<ENTER> clears the display and lists the last line.

MODEL I, MODEL III, MAX-80, MODEL 4 and ESOTERIC RESERVED WORDS
MAX-80, MODEL 4, and ESOTERIC BASIC reassigned token values for reserved words that most likely would not be used in a program. e.g., DELETE. And MAX-80, MODEL 4, and ESOTERIC BASIC assigned reserved words to the four unassigned values of 0FCH through 0FFH; otherwise, the token values are the same for the five versions of BASIC.

DEC HEX		WORD				DEC HEX		WORD					DEC HEX		WORD				DEC HEX		WORD

128 80H		END					160 A0H		OUT						192 C0H		VARPTR			224 E0H		EXP
129 81H		FOR					161 A1H		ON						193 C1H		USR					225 E1H		COS
130 82H		RESET				162 A2H		OPEN					194 C2H		ERL					226 E2H		SIN
131 83H		SET					163 A3H		FIELD					195 C3H		ERR					227 E3H		TAN
132 84H		CLS					164 A4H		GET						196 C4H		STRING$			228 E4H		ATN
133 85H		CMD					165 A5H		PUT						197 C5H		INSTR				229 E5H		PEEK
134 86H		RANDOM			166 A6H		CLOSE					198 C6H		POINT				230 E6H		CVI
135 87H		NEXT				167 A7H		LOAD					199 C7H		TIME$				231 E7H		CVS
136 88H		DATA				168 A8H		MERGE					200 C8H		MEM					232 E8H		CVD
137 89H		INPUT				169 A9H		NAME/CHAIN		201 C9H		INKEY$			233 E9H		EOF
138 8AH		DIM					170 AAH		KILL					202 CAH		THEN				234 EAH		LOC
139 8BH		READ				171 ABH		LSET					203 CBH		NOT					235 EBH		LOF
140 8CH		LET/SOUND		172 ACH		RSET					204 CCH		STEP				236 ECH		MKI$
141 8DH		GOTO				173 ADH		SAVE					205 CDH		+						237 EDH		MKS$
142 8EH		RUN					174 AEH		SYSTEM/CALL		206 CEH		‑						238 EEH		MKD$
143 8FH		IF					175 AFH		LPRINT				207 CFH		*						239 EFH		CINT
144 90H		RESTORE			176 B0H		DEF						208 D0H		/						240 F0H		CSNG
145 91H		GOSUB				177 B1H		POKE					209 D1H		[241 F1H		CDBL
146 92H		RETURN			178 B2H		PRINT					210 D2H		AND					242 F2H		FIX
147 93H		REM					179 B3H		CONT/EXIT			211 D3H		OR					243 F3H		LEN
148 94H		STOP				180 B4H		LIST					212 D4H		>						244 F4H		STR$
149 95H		ELSE				181 B5H		LLIST					213 D5H		=						245 F5H		VAL
150 96H		TRON				182 B6H		DELETE/ERASE	214 D6H		<						246 F6H		ASC
151 97H		TROFF				183 B7H		AUTO/ZERO			215 D7H		SGN					247 F7H		CHR$
152 98H		DEFSTR			184 B8H		CLEAR					216 D8H		INT					248 F8H		LEFT$
153 99H		DEFINT			185 B9H		CLOAD/WC, HR	217 D9H		ABS					249 F9H		RIGHT$
154 9AH		DEFSNG			186 BAH		CSAVE/LABEL		218 DAH		FRE					250 FAH		MID$
155 9BH		DEFDBL			187 BBH		NEW						219 DBH		INP					251 FBH		'
156 9CH		LINE				188 BCH		TAB(220 DCH		POS					252 FCH		HEX$
157 9DH		EDIT/SORT		189 BDH		TO						221 DDH		SQR					253 FDH		WPEEK
158 9EH		ERROR				190 BEH		FN						222 DEH		RND					254 FEH		BIN$
159 9FH		RESUME			191 BFH		USING					223 DFH		LOG					255 FFH		ROW

Arguments in a program cannot contain reserved words. Example: DISTANCE, DONE, and BLOCK cannot be used as arguments because they contain TAN, ON, and LOC respectively.

SUPERBASIC

A SUPERBASIC program consists of one or more program lines. The lines may be numbered from 0 to 65529 for the Model I and Model III and 0 to 65535 for the MAX-80, Model 4, and ESOTERIC. Program lines are created with 1 to 240 characters for the Model I and Model III and 0 to 245 characters for the MAX-80, Model 4, and ESOTERIC. The characters in a line make one or more BASIC statements. A statement is one complete instruction. A statement can be one word and/or a group of words. When you are in the command mode, you can use most statements as commands – you cannot complete INPUT statements in the command mode. And, the commands previously described cannot be used as statements in a BASIC program. Some of the following SUPERBASIC instructions may be used as statements; however, their execution terminates the program and clears all variables. Examples of SUPERBASIC instructions are in the sample program found in APPENDIX B. This is indicated with ‘See line 00000 in sample program.’ where 00000 is the line number in the sample program.

The statements that follow are either not covered in the MODEL III/4 BASIC Language Reference Manual (Radio Shack CAT. NO. 26‑2112) and/or are different in SUPERBASIC.

&H, and &X	Hexadecimal and Binary constants.

		&[H]hhhh	hhhh is a hexadecimal number 1 to 4 characters long.
		&X xxxxx	xxxxx is a binary number 1 to 16 characters long.

The ampersand instruction is an integer function that enables you to use hexadecimal (base 16) or binary (base 2) constants in your program. The H is optional in SUPERBASIC.

EXAMPLES:
				X = &4000						assigns the decimal value of 16384 to X.
				Y = &6000 ‑ &5200		assigns 3584 (24576‑20992) to the variable Y
				POKE &FFFD, 4				places 4 in memory location FFFDH.
				Z = &X1111					assigns 15 to the variable Z.

The ampersand functions can be used to assign values to variables; or, can be used as operands for numeric operators, relational operators, or logical operators.

See lines 10500 and 10600 in sample program.

MAX-80, MODEL 4, and ESOTERIC:
The VAL string function can process an ampersand constant in a string.

EXAMPLE:
				X = VAL(“&4000”)		assigns the decimal value of 16384 to X

A useful application using this capability is converting an input statement that asks for a hexadecimal number into a constant that can be processed with other functions.

EXAMPLE: Get value contained in a word.
			1250 INPUT “Location of word (HEX)”;A$
			1300 PRINT WPEEK(VAL(“&” + A$))

MAX-80, MODEL 4, and ESOTERIC
ASC					ASCII to decimal

				ASC(str$)

					str$ = string.

ASC returns the ASCII code of the first character in str$. The string argument must be enclosed in parentheses. If the string argument is null, ASC returns 0.

EXAMPLE:	A$="GEORGE", B$="HARRY", C$="01010", D$="" (null)
				15600 PRINT ASC(A$),ASC(B$),ASC(C$),ASC(D$),ASC("E")
							prints: 71, 72, 48, 0, and 69 respectively.

MAX-80, MODEL 4, and ESOTERIC
BIN$				Integer to binary.

				BIN$(exp)

					exp = expression in the range of ‑32768 to 32767 or 0 to 65535.

BIN$ converts a numeric expression or constant into a 16 character string. The numeric expression or constant must be enclosed in parentheses.

EXAMPLE:
				10 PRINT BIN$(173)		prints 0000000010101101
				20 PRINT BIN$(‑74)		prints 1111111110110110
				30 PRINT BIN$(65461)	prints 1111111110110110

MAX-80, MODEL 4, and ESOTERIC
CALL				Execute machine language routine.

				CALL exp

					exp = expression in the range of ‑32768 to 32767, or 0 to 65535.
	
CALL executes the machine language routine at exp. If the machine language routine executes without moving the Stack Pointer, and terminates with a RET instruction, your SUPERBASIC program continues with the next statement. CALL does not pass and/or receive any arguments to/from the machine language routine. Use the USR function to pass and/or receive one argument.

EXAMPLE:
				1020 CALL &4461:CLS

When this line is encountered, SUPERBASIC calls the machine language routine at 4461H (screen dump for MAX-80 and MODEL 4) then returns to the next statement, CLS.

See line 19200 in sample program.

MAX-80, MODEL 4, and ESOTERIC
CLEAR n			Change the amount of string space. {does not change program}

				CLEAR exp

					exp = expression in the range of ‑32768 to 32767 or 0 to 65535.

CLEAR exp changes the amount of string space currently allocated for string storage without clearing variable values. However, all FOR‑NEXT loops and GOSUBs are nullified.

EXAMPLE:
				100 CL=0
				120 ON ERROR GOTO "ERROR"
				130 LABEL "CLEAR"
				140 CLEAR CL
				150 INPUT"Your State";ST$
				... more program lines
				780 LABEL"ERROR":IF ERR = 26 THEN CL=CL+5: RESUME "CLEAR"

	This short program keeps asking for the name of your State until it clears enough string space (by adding 5 to the amount of free string space) to handle the number of characters in you state's name.

See line 10200 in sample program.

MAX-80, MODEL 4, and ESOTERIC
CLEAR				Clears variable values, resets USR definitions, collapses FOR‑NEXT loops, resets GOSUB return pointers, and changes program.

CLEAR n:CLEAR is a near equivalent of CLEAR n on the MODEL I and MODEL III.

MAX-80, MODEL 4, and ESOTERIC
CLS n				Paint the screen.

				CLSexp
					exp = an expression between 0 and 255.

CLS exp places the video poke value of exp in all video RAM positions.

EXAMPLE:
				10 CLS 191

[bookmark: _GoBack]This whites out the display, does not disable reverse video, does not reset WIDE display mode, and homes the cursor. CLS without and expression clears the screen, resets reverse video, resets WIDE display mode, and homes the cursor. CLS32 clears the screen, does not disable reverse video, does not reset WIDE display mode, and homes the cursor.

NOTE: The <CLEAR> key does not clear the screen. <CLEAR> clears from the cursor to the end of display.

MAX-80, MODEL 4, and ESOTERIC
CMD"B"				Disable normal responses to the <BREAK> key.

					55 CMD"B":INPUT"Amount";AM#

CMD"B" disables the <BREAK> key until a statement or command that change a program is executed. The <BREAK> key is temporarily enabled during a CMD"fffff" and disabled again when SUPERBASIC is resumed. See the C command for statements and commands that change a program.

CMD"C"			Space compression. {changes program}

				CMD"C"<ENTER>

This command eliminates unnecessary spaces and linefeeds from the resident BASIC program, resulting in more available memory and faster execution.

CMD"D"			Load and execute DEBUG.

				CMD"D"

This command loads and executes DEBUG. (See the LIBRARY command DEBUG.)

CMD"E"			Disk I/O error.

				CMD"E"

This command displays the last DOS error that occurred during this invocation of BASIC.

MODEL I and MODEL III
CMD"K"			Zero array.

				CMD"K", vv(0[,0[,0[,...]]])[,vv(0[,0[,0[,...]]])[,...]]

					vv = any valid array variable name.
					 0 = dummy argument (one 0 required for each dimension).

CMD"K" sets all string arrays to null and sets every element of a numeric array to zero. ZERO does not remove the array from RAM. Use CMD"L" to remove an array.

EXAMPLE:
				10 DIM A(3,4), B$(12)
				. . .
				500 CMD"K", A(0,0),B$(0) {all elements (20) of array A are now zero, and all 13 elements of array B$ are now null}

MODEL I and MODEL III
CMD"L"			Remove array from memory

				CMD"L", vv(0[,0[,0[,...]]])[,vv(0[,0[,0[,...]]])[,...]]

					vv = any valid array variable name.
					 0 = dummy argument (one 0 required for each dimension).

EXAMPLE:
				10 DIM A(3,4), B(12)
				. . .
				500 CMD"L", A(0,0),B(0)	{array A and array B$ are removed from memory}
				510 DIM A(5,6),B(7)			{removing an array enables you to re-dimension arrays}

MODEL I and MODEL III
CMD"O"				Multi‑key numeric and string sort.

				CMD"O", exp,arv1(se)[POS bt][,[>]arv2(se)][POS bt][,...]						{DIRECT}
				CMD"O", exp,*iarv(se),arv1(se)[POS bt][,[>]arv2(se)][POS bt][,...]	{INDIRECT}

See SORT for a complete description of CMD"O".

CMD"O" requires installation of UTILA/BOL. The BASIC program OPT/BAS enables you to switch between UTILA/BOL and UTIL/BOL. If you switch in UTILA/BOL, you will not have the following commands:
													F single letter command						M single letter command
													N single letter command						CMD"C"
													CMD"V"														CMD"X"

You can always switch back UTIL/BOL. Or, have two different option diskettes.

CMD"P"			PACKER ‑ Pack program lines. {changes program}

				CMD"P"<ENTER>

When CMD"P" is entered:
			 'Program size = bytes sectors/byte {the program size as stored on disk}
				Maximum line length _'

[bookmark: OLE_LINK1][bookmark: OLE_LINK2]appears. Enter the maximum length for program lines. A # following the maximum length instructs PACKER to pack program lines without removing spaces. MAX-80, MODEL 4, and ESOTERIC: A * following the maximum length instructs PACKER not to renumber 0, 1, 2, etc. Both # and * may be specified in any order and must follow the line length. Enter any value between 0 and 65535. A 0 packs lines to a maximum of 65536 characters. The default value is 240 for the MODEL I and MODEL III; and, 245 for the MAX-80, MODEL 4, and ESOTERIC. If no errors occur, the program is packed and for the MAX-80, MODEL 4, and ESOTERIC renumbered 0, 1, 2, etc. Lines referenced by other program lines are not packed to a previous line. Lines with a REM or an IF statement are not packed to the following line. A line number followed by a Q indicates a line with an open quote.

CMD"Q"			String sort.

		(1)	CMD"Q",n1,vv$(0)
		(2)	CMD"Q",n1,vv$(0,0),n2

			vv$ =	Any valid string array variable name
			n1 =	An integer or integer variable representing the absolute highest element to be sorted.
			n2 =	A positive integer or integer variable representing the column number to sort in a two dimensional array (relative zero).

This command sorts a string array in accordance with the sign of n1. If n1 is positive, then the sort is in ascending and/or alphabetical order. If n1 is negative, then the sort is in descending and/or reverse alphabetical order. Option (1) is used to sort a single dimension array. The array is sorted up to the n1th element, including the 0th element. Option (2) is used to sort a two dimensional array with n2 indicating which column of the array to use as the sort key.

EXAMPLE:
				20 CLEAR 600: DIM A$(10)
				40 FOR I = 1 TO 10: READ A$(I): NEXT I
				50 DATA "WASHINGTON", "OREGON", "CALIFORNIA", "NEVADA", "IDAHO", "UTAH", "ARIZONA", "MONTANA", "WYOMING", "COLORADO"
				60 CMD"Q",I,A$(0)
				80 FOR I=1 TO 10: PRINT A$(I),: NEXT I

	The printout is:

	ARIZONA CALIFORNIA COLORADO IDAHO MONTANA
	NEVADA OREGON UTAH WASHINGTON WYOMING

	NOTE the following key points.
	 1.	The 0th element was not used (it is a null string).
	 2.	The value of I in line 60 is actually 11. CMD"Q" does not cause an error if the value of n1 is greater than the first dimension of the array.
	 3.	If line 60 were changed to: CMD"Q",‑I,A$(0) the printout would be:

	WASHINGTON UTAH OREGON NEVADA MONTANA
	IDAHO COLORADO CALIFORNIA ARIZONA

	What happened to WYOMING? A$(0)="WYOMING" and A$(10)="".

	 4.	If line 60 were changed to: CMD"Q",6,A$(0) the printout would be:

	CALIFORNIA IDAHO NEVADA OREGON UTAH
	WASHINGTON ARIZONA MONTANA WYOMING COLORADO

	Only the elements A$(0) through A$(6) were sorted, leaving A$(7) through A$(10) as loaded from the data statement.

There is another sort statement available. See SORT for MAX-80, MODEL 4, and ESOTERIC; and see CMD"O" for MODEL I and MODEL III.

MODEL I
CMD"R"			Enable interrupts

				CMD"R"

This command enables the interrupts.

CMD"S"			Exit SUPERBASIC.

				CMD["S"]<ENTER>

This command exits the present SUPERBASIC invocation. The S is optional.

MODEL I
CMD"T"			Disable interrupts

				CMD"T"

This command disables the interrupts. This command is invoked automatically when CLOAD, CSAVE, and/or SYSTEM in entered in the command mode.

CMD"U"			UNPACKER ‑ Unpack program lines. {changes program, and CLEARs 73}

				CMD"U"[,C]<ENTER>

The UNPACKER unpacks a program into as many lines as possible, inserts spaces around each reserved word, and renumbers the program 10, 20, etc. The C option instructs CMD"U" to make as many lines as possible without adding spaces around each reserved word. UNPACKER displays single letters to let you know the progress:
					C = Checking for errors (see renumber, O command, for error types)
					S = Spreading (separating multiple statement lines to individual lines)
					U = Unpacking (adding spaces around reserved words)
					R = Renumbering

CMD"V"			Defined variables.

				CMD"V"<ENTER>

This command displays all assigned scalar variables and string equivalents in the order they were created, and all array arguments with the left most index incrementing to the dimension limit, then the elements to the right incrementing to the dimension limit, etc. The screen clears and up to one page, less two lines are displayed. Press any key to display an additional variable or <ENTER> to display up to one page more.

MODEL I and MODEL III
CMD"W"			Transfer BASIC program to Level II BASIC or Model III BASIC

				CMD"W"<ENTER>

This command transfers the resident BASIC program to ROM BASIC. cf BASIC # on page 102.

CMD"X"			Remove REMark statements. {changes program}

				CMD"X"<ENTER>

This command removes REMark statements from the resident BASIC program. If a line consists of a remark statement only, then the entire line is removed. After the remark statements are removed, error checking is performed by RENUM/BOL to check for undefined lines. CMD"X" requires UTIL/BOL, EDIT/BOL, and RENUM/BOL to be available.

MAX-80, MODEL 4, and ESOTERIC
CMD"Y"			Utility for counting and listing.

	CMD"Y"[,T]<ENTER>			Prints the line lengths in ascending line number order in the format nnnnn/lllll, where nnnnn is the line number and lllll is the length. If T is specified, then the lengths reflect the tokenized length.
	CMD"Y",C<ENTER>				Prints the number of lines in the program.
	CMD"Y",L[G]<ENTER>		LISTs the program, indenting lines wider than the video. If G is specified, then do not convert graphic characters to periods.
	CMD"Y",LP[G]<ENTER>		LLISTs the program, indenting lines wider than the FORMS setting for width. If G is specified, then do not convert graphic characters to periods.
	CMD"Y",Q<ENTER>				Prints the highest 64 line lengths in ascending length order in the format nnnnn/lllll, where nnnnn is the line number and lllll is the length.
	CMD"Y",A<ENTER>				Prints - in the CMD"Y",Q format - line numbers that should not be saved using the ",A" option (ASCII). May not print anything.

CMD"fffff"	Execute a MULTIDOS LIBRARY command or UTILITY from SUPERBASIC.

				CMD var$
		 or	CMD "fffff"

					 var$	= string argument valued with a MULTIDOS LIBRARY command or UTILITY
					fffff = any valid MULTIDOS LIBRARY command or UTILITY.

This command executes any MULTIDOS command that does not change TOPMEM6, including BASIC, from within the SUPERBASIC environment. The command may be used in the direct mode or as a statement within a BASIC program. CMD"fffff" temporarily sets TOPMEM to a value to protect the BASIC program, and requires 6272 free bytes to execute for MODEL I and MODEL III or 6048 free bytes to execute for MAX-80, MODEL 4, and ESOTERIC.

EXAMPLES:
				CMD"DIR"
				The directory contents are displayed.

				CMD"BACKUP":GOTO 230
				BACKUP/CMD is loaded and executed. Upon completion, the BASIC program executes the next instruction ‑ GOTO 230.

NOTE 6: The LIBRARY commands DO, RESET, TOPMEM, and ROUTE change the value of TOPMEM. A DO file completes before it returns to BASIC, RESET simply exits BASIC, TOPMEM changes are ignored, and a ROUTE to a filespec is not allowed. You may execute a command such as CMD"ROUTE PR to DO" with no problem.

Any non‑MULTIDOS /CMD program that uses memory above 68FFH (60FFH for ESOTERIC), causes a crash upon an attempt to return to SUPERBASIC if just the minimum (6272 or 6048) bytes are free and you do not abort BASIC. You can abort MAX-80’s, MODEL 4’s, and ESOTERIC’s BASIC by inserting instructions similar to the code segment on the last page of Entry points for ESOTERIC into your application.

You can compute the free memory required:

					FREE MEMORY REQUIRED = HIGHEST BYTE USED - 26879 + 6048. {MODEL 4 MULTIDOS}

See line 10600 in sample program.

DEF FN			Define function.

				DEF Fnxxx(uuu[,uuu...]) = www

					xxx = Name of the function (any valid variable name).
					uuu = Arguments to be used to define the function.
					www = An expression or formula involving the arguments uuu.

This statement creates an implicit function. After a function has been defined, the function can be used as any of the other intrinsic functions, e.g., ATN, COS, ASC, etc. The type of value returned is the same as the type of variable used to name the function. In addition, the arguments used in the DEF FN statement are local arguments and do not affect the arguments used elsewhere in the program. A space is optional between DEF and FN, i.e., DEF FN or DEFFN.

EXAMPLE:
				10 DEFFN Q(K,L) = K/10 + L/20
				20 INPUT "Enter quantity of nickels and dimes";N,D
				30 PRINT "The amount in dollars is";FN Q (D,N)

The function Q, FN Q, is defined using K and L, and the arguments in line 20 and 30 are N and D. K and L can be used elsewhere in the program without affecting FN Q. And FN Q, using K and L, has no effect on the arguments K and L used elsewhere in the program.

DEF USR			Define entry address of USR routine.
				DEF USRn = aaaaa

						 n =	The digit 0‑9. If n is omitted 0 is used.
					aaaaa =	The entry address to a machine language routine. aaaaa may be any numerical expression, including constants, arguments, and/or functions.

EXAMPLE:
				10 CLEAR 500: DEFINT A‑Z
				20 N = 20000
				30 DEF USR 5 = N * 3
				.. more program lines
				780 G=USR5(E)

	Defines 60000 decimal to as the entry point to a USR 5 call. A space is optional between DEF and USR, i.e., DEF USR or DEFUSR.

See line 17500 in sample program.

MAX-80, MODEL 4, and ESOTERIC
ERASE				Remove an array from memory.

				ERASE vv[(][,vv[(] [,...]]

					vv = any valid array variable name.

ERASE removes arrays. The memory used by the array is made available without clearing any other variable. In addition, this enables you to dimension the same array again.

EXAMPLE:
				10 DIM A$(20,2)
				... more program lines
				1020 ERASE A$(
				1030 DIM A$(30,3), B(22), C(88)
				... more program lines
				1020 ERASE B(,C(

The MODEL I and MODEL III functional equivalent to ERASE is CMD"L",

See line 22000 in sample program.

The use of the optional left parenthesis enables CREF to indicate the variable is an array in the ERASE statement.

ERROR				Simulate an error condition.

				ERROR exp

					exp = expression between 1 and 255

ERROR simulates the error in exp. The MODEL I and MODEL III (ROM) cannot simulate errors above 23. The ERR codes, ERROR codes, and definitions are detailed on pages 154 through 159.

MAX-80, MODEL 4, and ESOTERIC
EXIT				Prematurely exit a FOR‑NEXT loop.

				EXIT eeeee

					eeeee = a line number from 0 to 65535 or a "label"

EXIT enables you to exit a FOR‑NEXT loops before the loop has completed the specified number of cycles. EXIT transfers the program control to the line number and/or label and cancels the current loop and all immediate outer FOR‑NEXT loops. The value of the loop counters when EXIT is encountered is available for use.

EXAMPLE:
				10 FOR I = 1 TO 999: IF INKEY$<>"" EXIT "KEY"
				20 NEXT I
				30 PRINT "Sorry, timed out."
				40 GOTO "SLEEP"
				50 LABEL "KEY"

	This example provides a means to time a response. If the response takes longer than the allocated time (approximately 3 seconds), then the program branches to the line with LABEL"SLEEP". However, if you press a key, then the program branches to the line with LABEL"KEY" and the time of the response is in the variable I.

See lines 20100 and 40200 in sample program.

MAX-80, MODEL 4, and ESOTERIC
HEX$				Integer to hexadecimal.

				HEX$(exp)

					exp = expression in the range of ‑32768 to 32767 or 0 to 65535.

HEX$ converts a numeric expression or constant into a four character hexadecimal string. The numeric expression must be enclosed in parentheses.

EXAMPLE:
				10 PRINT HEX$(173)		prints "00AD"
				20 PRINT HEX$(‑74)		prints "FFB6"
				30 PRINT HEX$(65461)	prints "FFB6"

INPUT				Assign data to variable(s).

		(1) INPUT["prompt";]var1[,var2][,...
				MAX-80, MODEL 4, and ESOTERIC
		(2) INPUT!col,row,[%rvar,]|[#]len,char,[USING str$],["prompt";]var1[,var2][,...
		(3) INPUT@pos,[%rvar,]|[#]len,char,[USING str$],["prompt";]var1[,var2][,...

	 "prompt"; =	An optional prompt message.
var1, var2, etc. =	numeric and/or string arguments.
				 col =	the video column (X coordinate) horizontal axis. (0 to 79 in 80X24 video mode, or 0 to 63 in 64X16 video mode)
				 row =	the video row (Y coordinate) vertical axis. (0 to 23 in 80X24 video mode, or 0 to 15 in 64X16 video mode)
							 % =	precedes rvar to hold the terminator value
					 rvar =	the numeric variable to receive the terminator value. Use of %rvar is exclusive with the automatic <ENTER> flag [#] because it also specifies automatic <ENTER> when the input field is full. Any value between 1 and 31 (except 8 and 24) is considered a terminator. However, in position one; a left arrow <> exits with rvar equal to 8. An <ENTER> before the field is full returns 13 into rvar. A full input field returns 0 in rvar.
							 # =	specifies automatic <ENTER> when the input field is full.
				 len =	the length of the input field(s) (1 to 255).
				 char =	video poke value to delineate the input field (1 to 255).
			 USING str$=	str$ = string expression representing the mask characters. USING str$ means only accept characters in str$.
						 pos =	video display position. (0 to 1919 in 80X24 video mode, or 0 to 1023 in 64X16 video mode)

Option 1 displays a space and question mark before the input field and prints a carriage return and places the cursor on the next line when <ENTER> is pressed. Options 2 and 3 do not print a space and question mark and do not print a carriage return when <ENTER> is pressed. If you want the cursor on the next line, you will have to issue a PRINT statement.

EXAMPLE:
				10 CLEAR 5000:CLS
				20 A$="1234"
				... more program lines
				300 PRINT"Please select one category"
				310 PRINT"(1) List the file."
				320 PRINT"(2) Save the file."
				330 PRINT"(3) Display directory."
				340 PRINT"(4) Return to DOS."
				350 INPUT @ 720, 1, 95, USING A$, "Selection ";S%
				... program continues

	The only characters the INPUT statement accepts in line 350 are 1, 2, 3, or 4: the characters in A$ (line 20).

Options 2 and 3 enable you to have an INPUT prompt on the last line of the video display without scrolling the display when you enter the data.

See lines 12300 and 18000 in sample program.

INSTR				String search.

				INSTR([p,]string,substring)

									p = An optional search starting position in string (default 1).
						 string = The name of the string to be searched.
					substring = (1) The name of the substring you are searching for,
									 or (2) The actual substring you are searching for.

This function searches through string to see if it contains substring. If it contains substring, INSTR returns the starting position of substring in string; otherwise, zero is returned. If substring is a null string, INSTR returns zero.

EXAMPLES	(let Z$="SUPERBASIC", W$="" {null}, X$="SUPER")

				Expression														Result
				INSTR (Z$, "PER")											 3
				INSTR (2, Z$, W$)											 0	{W$ is null}
				INSTR (3, Z$, "U")										 0
				INSTR (2, Z$, X$)											 0
				INSTR (4, Z$, "BASIC")									6
				INSTR (3, "ABCDABCDABCDABCD", "ABC")		5

MAX-80, MODEL 4, and ESOTERIC
LABEL				Identifier for a symbolic expression for a line.

			LABEL"label"

					label = a string (1 to 255 characters)

LABEL enables you to construct a SUPERBASIC program with labels to identify key points in your program without having to remember the line number of the routine. For example, you have developed a routine to calculate the difference between two dates, and have placed this routine somewhere near the end of the program. While you are still developing the front end, as you add lines you must continually renumber the program to fit the new lines in the appropriate positions in the program text. After each renumber, you must find the line number of this routine and refer to it correctly. However, if you labeled the routine "DIFFDAYS", you can renumber as many times as you wish and simply refer to "DIFFDAYS" to perform the required calculation.

EXAMPLE:
				10 CLEAR5000:CLS
				20 INPUT!0,0,6,95,USING"0123456789","The promise date in YYMMDD ";PD!
				30 INPUT!0,1,6,95,USING"0123456789","The critical date in YYMMDD ";CD!
				40 GOSUB"DIFFDAYS":IF DD!>0 THEN PRINT!0,2,"The promise supports the program": GOTO"NEXT" ELSE PRINT!0,2,"You must improve the promise date":GOTO"EXPEDITE"
				... more program lines
				1030 LABEL"DIFFDAYS" '(PD! ‑ CD!) in days, is returned in DD!
				... date calculator routine
				2090 RETURN

See lines 11800, 12600, 15400, 16400, … in sample program.

LINE INPUT	Input a string from keyboard.

		(1) LINE INPUT["prompt";]var$
				MAX-80, MODEL 4, and ESOTERIC
		(2) LINE INPUT!col,row,[%rvar,]|[#]len,char,[USING str$],["prompt";]var$
		(3) LINE INPUT@pos,[%rvar,]|[#]len,char,[USING str$],["prompt";]var$

				Note: The vertical bar, |, denotes exclusive options. i.e., you may use the option before the vertical or the option after the vertical bar but not both in the same statement.

	 "prompt"; =	An optional prompt message.
				 var$ =	a string variable.
				 col =	the video column (X coordinate) horizontal axis. (0 to 79 in 80X24 video mode, or 0 to 63 in 64X16 video mode)
				 row =	the video row (Y coordinate) vertical axis. (0 to 23 in 80X24 video mode, or 0 to 15 in 64X16 video mode)
							 % =	precedes rvar to hold the terminator value
					 rvar =	the numeric variable to receive the terminator value. Use of %rvar is exclusive with the automatic <ENTER> flag [#] because it also specifies automatic <ENTER> when the input field is full. Any value between 1 and 31 (except 8 and 24) is considered a terminator. However, in position one; a left arrow <> exits with rvar equal to 8. An <ENTER> before the field is full returns 13 into rvar. A full input field returns 0 in rvar.
							 # =	specifies automatic <ENTER> when the input field is full.
				 len =	the length of the input field (1 to 255).
				 char =	video poke value to delineate the input field (1 to 255).
			 USING str$=	str$ = string expression representing the mask characters. USING str$ means only accept characters in str$.
						 pos =	video display position. (0 to 1919 in 80X24 video mode, or 0 to 1023 in 64X16 video mode)

Option 1 issues a linefeed and carriage return and places the cursor on the next line when <ENTER> is pressed. Options 2 and 3 do not issue a linefeed and carriage return when <ENTER> is pressed. If you want the cursor on the next line, you will have to issue a PRINT statement. The input field begins immediately after the optional prompt; therefore, for most programs your prompt would have a trailing space. e.g., "Amount ";

Options 2 and 3 enable you to have a LINE INPUT prompt on the last line of the video display without scrolling the display when you enter the data.

This statement is the method to input a complete line from the keyboard, including leading spaces, punctuation, and linefeeds. This statement sets the variable to null, and does not print a question mark. A space is optional between LINE and INPUT, i.e., LINE INPUT or LINEINPUT.

See lines 15800, 16600, 18500, 26100, and 26500 in sample program.

MID$=				Replace portion of a string.

				MID$(vv$,p[,c])=rr$

					vv$ =	The variable string to be changed.
					 p =	The starting position within the string for the replacement.
					 c =	An optional parameter indicating the number of characters to be replaced.
					rr$ =	The replacement string.

This statement changes part of a string. The length of the target string, vv$, is not changed by the MID$ = statement. Excess characters to the right of rr$ are ignored if rr$ is longer than vv$.

EXAMPLES: (let C$="12345678", D$="BASIC")

				Expression 					Resultant C$
				MID$(C$,3,4)="ABCDE"					12ABCD78
				MID$(C$,1,2)=D$								BA345678
				MID$(C$,8)="YZ"								1234567Y

See lines 19100 and 19300 in sample program.

MAX-80, MODEL 4, and ESOTERIC
NEW				Resets program pointers.

				NEW

NEW resets all program pointers and CLEARs 50. You can un-NEW with o<ENTER>.

MAX-80, MODEL 4, and ESOTERIC
ON STOP GOTO	Trap a <BREAK> press during program execution.

				ON STOP GOTO eeeee

					eeeee = a line number from 0 to 65535 or a "label"

ON STOP GOTO transfers to the specified line or label if the <BREAK> key is pressed during program execution. After an ON STOP GOTO eeeee is encountered in the program, the <BREAK> key is disabled during input: the <BREAK> key is not recognized in a LINE INPUT and/or an INPUT statement. During program execution a transfer to eeeee occurs if the <BREAK> key is pressed.

To enable <BREAK>, set eeeee to zero. i.e., ON STOP GOTO 0. This should be performed in a common exit routine to ensure the <BREAK> key is available for the next program.

See lines 12200, 17600, 19400, 21300, and 40400 in sample program.

PRINT				Display data.

		(1) PRINToutv
		(2) PRINT@pos,outv
MAX-80, MODEL 4, and ESOTERIC
		(3) PRINT!col,row,outv

				outv =	expression with optional USING, TAB(, or TAB(# modifiers.
				@pos =	video display position. (0 to 1919 in 80X24, or 0 to 1023 in 64X16)
				 col =	the video column (X coordinate) horizontal axis. (0 to 79 in 80X24 video mode, or 0 to 63 in 64X16 video mode)
				 row =	the video row (Y coordinate) vertical axis. (0 to 23 in 80X24 video mode, or 0 to 15 in 64X16 video mode)

See lines 14700, 15100, 15700, 16500, 24700, 25100, and 25400 in sample program.

MAX-80, MODEL 4, and ESOTERIC
RANDOM				Seed random number generator.

				RANDOM[RESET]

RANDOM enables you to have a different sequence of pseudorandom numbers. RANDOM RESET enables you to have the same sequence of pseudorandom numbers.

MAX-80, MODEL 4, and ESOTERIC
RESTORE				Reset DATA pointer.

				RESTORE[eeeee]

					eeeee = a line number from 0 to 65535 or a "label"

RESTORE resets the DATA pointer to the beginning of the BASIC program, or to the line or label represented by eeeee.

MAX-80, MODEL 4, and ESOTERIC
RND					Produce pseudorandom numbers.

				RND(exp)

					exp = expression in the range of ‑16777215 and 16777215

 RND uses the integer part of exp and:
		returns a pseudorandom number between 1 and INT(exp) if INT(exp) is greater than 1.
		returns 1 if INT(exp) = 1.
		returns a pseudorandom number between 0 and less than 1 if INT(exp) = 0.
		returns ‑1 if INT(exp) = ‑1.
		returns a pseudorandom number between INT(exp) and -1 if INT(exp) is less than ‑1.

MAX-80, MODEL 4, and ESOTERIC (MODEL I and MODEL III exact equivalent is CMD"O")
SORT				Multi‑key numeric and string sort.

				SORT exp,arv1(se)[POS bt][,[>]arv2(se)][POS bt][,...]			{DIRECT}
				SORT exp,*iarv(se),arv1(se)[POS bt][,[>]arv2(se)][POS bt][,...]	{INDIRECT}

					 exp =	absolute number of elements in each of the arrays participating in the sort (0 to 32767).
		arv1, etc. = the arrays to participate in the sort.
					 se =	starting element of the corresponding array.
					 bt =	starting point for string array (bt = 0 to 255).
					iarv =	an integer array used as a pointer for indirect sorts.

Both exp and arv1 are required for either sort. In addition, iarv is required for the indirect sort.

The SORT statement is used to sort integer, single, or double precision numeric arrays, and string arrays. If exp is positive, then the sorted arrays is in ascending alphabetical order for string arrays or most negative to most positive for numeric arrays. Each array can have a plus (+) or minus (‑) sign preceding the array name to determine the order in which that particular array controls the sort. However, if exp is evaluated to be negative, then the signs preceding the arrays are ignored, and the sort is in reverse alphabetical order (descending) for string arrays or most positive to most negative for numeric arrays.

Direct Sort
The DIRECT sort statement swaps all of the corresponding elements in each array in the sort statement.

Although all corresponding elements in the sort statement are swapped, you can specify how many arrays are to be considered in determining the sort by placing a > character in front of an array. The > character directs the sort statement not to consider arrays that follow.

EXAMPLE:
				SORT E, J(1), K(1), ‑L(1), >M(1), N(1)

If E is evaluated positive, then the elements in array J are sorted in ascending order. If two elements, being compared, in array J are equal, then the corresponding two elements are compared in array K to determine the sort order. If the corresponding two elements in array K are equal, then the corresponding two elements in array L are compared. If the corresponding two elements in array L do not match, then the sort order is descending for all of these corresponding elements when array L is used to determine the sort. If the corresponding two elements in array L are equal, arrays M and N are not considered in determining the sort; therefore, the corresponding elements are not swapped. Although arrays M and N do not determine the sort order, the corresponding elements in arrays M and N are swapped along with the corresponding elements in arrays J, K, and L.

If E is evaluated negative, then all of the arrays are sorted in descending order.

The use of the sign in evaluating the E expression enables you to programmatically control the sort order without having two sort statements.

		770 'The variable K holds the number of elements to be sorted
		780 INPUT!0,ROW(0),#1,95,USING"ADad","<A>scending or <D>escending ";Z$
		790 PRINT
		800 IF Z$ = "a" OR Z$ = "A" THEN E = K ELSE E = ‑K

You can place a negative sign in front of the E expression instead of each array to make the sort order descending.

		SORT ‑22, A$(1), B#(1), A%(1), B!(1)

This statement sorts elements 1 through 22 of arrays A$, B#, A%, and B! in descending order. This is the same as:

		SORT 22, ‑A$(1), ‑B#(1), ‑A%(1), ‑B!(1)

Optional Plus Sign
Although the sort defaults to ascending order, a plus sign is optional to signal ascending order.

		SORT (J/2+K), +A(1),‑B(1),+C(1)

This statement sorts array A in ascending order. If two elements, being compared, in array A are equal, then the corresponding two elements in array B are used to determine the sort order. If the corresponding two elements in array B are not equal, then the sort is descending for these two elements. This is the same as:

		SORT (J/2+K), A(1),‑B(1),C(1)

When a string array is used in a SORT statement, you can specify the starting point for comparison in each string array.

		SORT V, A$(0) POS J, B$(0), C!(0),‑D$(0) POS K, E#(0)

This statement sorts array A$ using the Jth character as the first character in determining the sort. If the length of a string in array A$ is less than J, then the elements are not swapped during the sort. Only the elements whose string's length is J or more characters long participate in the sort.

Indirect Sort
The indirect sort only swaps the elements in array iarv. The other arrays in the sort statement are not changed. The indirect sort enables you to sort pointers for the other arrays. The following example demonstrates the result of an indirect sort.

EXAMPLE:
				 GIVEN___________

				B(1) = 20			C(1) = 9
				B(2) = 18			C(2) = 10
				B(3) = 20			C(3) = 10
				B(4) = 15			C(4) = 16
				B(5) = 7			C(5) = 17
				B(6) = 2			C(6) = 8

	The initial values in array A% are not relevant for the indirect sort statement. Any prior values for the elements in A% are ignored and changed.

				SORT 6, *A%(1), B(1), C(1)

	The contents of the B and C arrays are not changed. However the contents of array A% is as follows:

				A%(1) = 6
				A%(2) = 5
				A%(3) = 4
				A%(4) = 2
				A%(5) = 1
				A%(6) = 3

	A sorted list of arrays B and C can be obtained by using array A% as an index to the B and C arrays, i.e.,

				240 FOR I = 1 TO 6
				250 PRINT B(A%(I)), C(A%(I))
				260 NEXT I

The indexing array (A% in the preceding example) must be an integer array. However, the other arrays in the indirect sort statement can be integer, single precision, double precision, or string.

				SORT SQR(M!), *D%(1), G#(1), B$(1) POS 2, ‑ H%(1), > J#(2)

The global descending control for indirect sorts can be either for the elements to participate in the sort or the index array.

				SORT ‑12, *N%(1), H$(1)
				SORT 12, *‑N%(1), H$(1)

These two sort statements are equivalent in determining the sort order.

See line 20600 in sample program.

MODEL 4, and ESOTERIC
SOUND				Generate sounds.

				SOUND texp,dexp

					texp = tone, expression in the range of 0 to 31.
					dexp = duration, expression in the range of 0 to 255.

Texp is modulo 32. If texp evaluates to 56, then 24 is used for the tone. The lowest tone is zero. The lowest duration is zero and the longest duration is 255 which is about 11 seconds for a CPU speed of 4.05504 MHz. SOUND can't be stopped with <BREAK>.

MAX-80, MODEL 4, and ESOTERIC
TAB(#				Indirect TAB.

				TAB(#exp)

					exp = expression in the range of 0 to 255.

TAB(#exp) uses the current cursor position as the reference point. Whereas a TAB(exp) statement uses the starting left margin as the reference point.

TROFF				Disable TRON.

See TRON that follows.

MAX-80, MODEL 4, and ESOTERIC
TRON				Enable trace.

There are nine trace commands to provide debugging aids in developing programs. TROFF and all eight TRON commands can be used as statements.

TRON or TRON 0 = Trace program flow in upper right corner of display.
				TRON 1 = Trace program flow to printer.
				TRON 2 =	Print each BASIC statement in lower left corner of display prior to execution.
				TRON 3 = Single step each BASIC statement or program line with delay.
				TRON 4 = Full line single step.
				TRON 5 = Single statement step.
				TRON 6 = Disable single step and BASIC statement printing.
				TRON 7 = Print erroneous statement when an error occurs.

When a BASIC program is executing, and any TRON command is enabled, the following control keys can be used to invoke other TRON/TROFF commands:
		<CTRLP> = TRON 0		<CTRLQ> = TRON 1		<CTRLX> or <SHIFT> = TROFF
		<CTRLR> = TRON 2		<CTRLS> = TRON 3		<CTRLY> or <SHIFT> = TROFF except TRON 7
		<CTRLT> = TRON 4		<CTRLU> = TRON 5		<SHIFT> = slower TRON 3
		<CTRLV> = TRON 6		<CTRLW> = TRON 7		<SHIFT> = faster TRON 3

TRON	Trace on: to VIDEO. Invoked by <CTRLP> if any TRON is active.
		TRON enables printing each line number, prior to execution, in a controlled trace area ‑ the first four video lines in the upper right corner. The first line number entered, after TRON, prints on the first video line in the upper right corner of the display prefixed by the # sign. As each new line is entered the new line number prints below the previous line number until four video lines are used. When the fifth line number is entered, the new line number overprints the first line number. When the sixth line number is entered the sixth line number overprints the second line number. This process continues, displaying the last four line numbers entered with the # sign prefixing the last entered line number.

TRON 1	Trace on: to PRINTER. Invoked by <CTRLQ> if any TRON is active.
		TRON 1 enables printing each line number, prior to execution, onto the printer. The printout is similar to:

					LPRINT USING "######";LINE;

		where LINE is the line number. This format, using six print positions per line number, enables you to control the printout by adjusting the FORMS width prior to using TRON 1.

TRON 2	Trace on VIDEO with print of BASIC statements. Invoked by <CTRLR> if any TRON is active.
		TRON 2 prints each BASIC statement in the lower left corner using the last two video lines. The first statement in a program line is displayed without a preceding colon. A multiple statement line has the second and/or greater statement printed prefixed by a colon. A BASIC statement larger than two video lines scrolls the display.

TRON 3	Trace on VIDEO with delay. Invoked by <CTRLS> if any TRON is active.
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]		TRON 3 delays the BASIC interpreter prior to each BASIC statement if TRON 5 is active; otherwise, TRON 3 delays prior to the execution of each BASIC line, displaying the line number in the upper right corner prior to the line being executed. You can switch between delays at the beginning of each line to delays at the beginning of each statement by pressing <CTRLU> to delay at the beginning of each statement or <CTRLT> to delay at the beginning of each line. The amount of delay is controlled by <SHIFT> and <SHIFT> while the program is executing. <SHIFT> doubles the delay until the delay is approximately one second. And <SHIFT> halves the delay until the delay is approximately three milliseconds. Both estimates are based on a CPU speed of 4.05504 MHz.

TRON 4	Trace on with full line pauses. Invoked by <CTRLT> if any TRON is active.
		TRON 4 pauses execution of the BASIC program at the beginning of each line entered until any key is pressed except <SHIFT@>.

TRON 5	Trace on with statement pauses. Invoked by <CTRLU> if any TRON is active.
		TRON 5 pauses execution of the BASIC program at the beginning of each statement until any key is pressed except <SHIFT@>.

TRON 6	Single step trace off. Invoked by <CTRLV> if any TRON is active.
		TRON 6 disables TRON 2, TRON 3, TRON 4, and TRON 5. TRON 6 executes a TROFF if TRON 2, TRON 3, TRON 4, or TRON 5 are the only trace commands active when TRON 6 is executed.

TRON 7	Print erroneous statement. Invoked by <CTRLW> if any TRON is active.
		TRON 7 prints the erroneous BASIC statement when an error occurs. This command assists you in finding the error in a multiple statement line.

TRON 8 through TRON 65535 does not error because the TRON n invoked is the remainder of the 8 through 65535 divided by 8 (modulo 8).

TRON[0] and TRON 1 are mutually exclusive. TRON 4 and TRON 5 are obviously mutually exclusive. You can have TRON[0] or TRON 1, TRON 2, TRON 3, TRON 4 or TRON 5, and TRON 7 active at the same time.

STRING COLLECTION
String collection for the MAX-80, MODEL 4, and ESOTERIC has been enhanced to significantly reduce the time it takes to collect active strings. To achieve this fast collection, two bytes of free memory are required for each active string in a temporary work area. When the string collection is complete, this temporary work area is returned to free memory.

Timing in seconds for a CPU speed of 4.05504 MHz (Yes, MODEL III at 4.05504 MHZ):
		Strings		Fast Time		 Slow Time		MODEL III Time
			 100			0.13					0.57					0.95
			 500			0.53				 11.10				 19.9
			1000			1.11				 43.20				 77.8
			2000			2.38				170.55				307.6

The previous method used to reduce string collection was obtained by clearing as much string space as possible. Now you should leave, if possible, at least to bytes free for each active string. Execution of a LOAD "filespec", RUN "filespec", and/or NEW command CLEARs 50 in addition to performing the LOAD, RUN, or NEW.

When any of the trace functions are active, BASIC prints a $ in the upper right of the screen during the string collection routine. If there is insufficient RAM available for the fast collection, a G is printed and the slow process of string collection is invoked.

USR					Execute a machine code routine.

				var = USR [n](exp)

					var = variable to receive the value returned from the USR call.
					 n = the digits 0 ‑ 9. If n is omitted 0 is used.
					exp = any expression, any precision.

This function transfers control to a machine language subroutine that has been previously defined by the DEFUSR statement and returns to next statement following the USR call. MAX-80, MODEL 4, and ESOTERIC: All previous definitions are reset by a CLEAR statement.

Upon entry to the USR routine, the HL register pair is valued with the start of the USR routine and information about exp is in ACUM0 and/or ACUM1 with the type in (40AFH).

	
	
	ACUM0
	
	
	
	ACUM1
	
	
	

	
	MULTIDOS = (40AF)
	ESOTERIC = (12F9)
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	MULTIDOS: xx = 41
	
	
	
	

	
	
	
	
	ESOTERIC: xx = 13
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	

	
	
	
	xx1D
	xx1E
	xx1F
	xx20
	xx21
	xx22
	xx23
	xx24

	
	
	
	
	
	
	
	
	
	
	

	DP
	8
	LSB
	nSB
	nSB
	nSB
	nSB
	nSB
	MSB
	Exp

	SP
	4
	
	
	
	
	LSB
	nSB
	MSB
	Exp

	INT
	2
	
	
	
	
	LSB
	MSB
	
	

	String
	3
	
	
	
	
	LSB
	MSB
	
	

	
	
	
	
	
	
	
	
VARPTR,
points to
	
	

	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	
	
	Length
	Location of string
	

	
	
	
	
	
	
	
	of string
	
	

	
	
	
	
	
	
	
	n
	LSA
	MSA
	

	
	
	
	
	
	
	
	
	
	
	

To pass exp to the HL register pair, execute a CALL MKINT as the first instruction in the USR routine. exp can be any precision and must be between -32768 and 32767.

If exp is a string: For the MODEL I and MODEL III, its VARPTR is in the DE register pair. For the MAX-80, MODEL 4, and ESOTERIC, its VARPTR can be placed into the HL register pair by executing CALL MKSTR as the first instruction.

The value placed in var upon return from the USR call is the value of exp; however, if exp is not an integer and MKINT is called, then var is INT(exp). If you want to pass the contents of the HL register pair to var, JP STINT as the last instruction.

	
	MODEL I
MODEL III
	MAX-80
MODEL 4
	ESOTERIC

	MKINT
	0A7F
	0909
	1B09

	MKSTR
	29DA
	092D
	1B2D

	STINT
	0A9A
	0942
	1B42

See line 17700 in sample program.

MAX-80, MODEL 4, and ESOTERIC
WPEEK				Examine the contents of a 16 bit word in RAM.

				WPEEK(addr)

					addr = RAM address in the range of ‑32768 to 32767 or 0 to 65535.

WPEEK returns a value between ‑32768 and 32767. WPEEK is more efficient than PEEK when you want to find a word value stored in RAM.

	WPEEK(address) is equivalent to PEEK(address)+256*PEEK(address+1).

In addition, if the sum of the PEEKs is greater than 32767, you do not have to convert for an integer expression.

EXAMPLE: You have stored a machine language routine in B$, and do not need to pass values to the routine, nor do you want to retrieve any values from the routine. This is accomplished in one statement: CALL WPEEK(VARPTR(B$) + 1)

See lines 17500 and 19200 in sample program.

MAX-80, MODEL 4, and ESOTERIC
ZERO				Zero array.

[bookmark: OLE_LINK7][bookmark: OLE_LINK8]				ZERO vv[(][,vv[(] [,...]]

					vv = any valid array variable name.

ZERO sets all string arrays to null and sets every element of a numeric array to zero. ZERO does not remove the array from RAM. Use ERASE to remove an array.

See line 33200 in sample program.

The use of the optional left parenthesis enables CREF to indicate the variable is an array in the ZERO statement.

BOSS SUPERBASIC (MODEL I and MODEL III)
BOSS SUPERBASIC is an enhanced version of MODEL I and MODEL III SUPERBASIC named BBASIC/CMD. BBASIC/CMD is started similar to BASIC/CMD for the MODEL I and MODEL III. BBASIC/CMD has all of the features of BASIC/CMD with the addition of single step, trace, argument review, and program pushing commands. Upon entering BBASIC, the <@> key becomes a control key, and '@' is printed by pressing <SHIFT·SPACE>.

The additional commands available with BBASIC are invoked by pressing down the <@> key first then, without removing your appendage from this key, press one of the keys on the top row of the keyboard. Seven of these commands can be obtained through program execution by poking an appropriate number into 16667 (411BH). This is ROM's trace byte. With the incorporation of these new trace commands, the TRON and TROFF commands are disabled.

The additional commands are described with <@> preceding a character.

	<@·1>	Trace off
				This will turn off all trace commands.

	<@·2>	Trace on: to VIDEO
				<@·2> enables printing each line number entered in a controlled trace area: the first four video lines in the upper right corner. The first line entered, after <@·2>, prints the line number on the first video line in the upper right corner of the display prefixed by the # sign. As each new line is entered the new line number prints below the previous line number until four video lines are used. When the fifth line is entered, the new line number overprints the first line number. When the sixth line is entered the sixth line number overprints the second line number. This process continues, displaying the last four line numbers entered with the # sign prefixing the last entered line.

	<@·3>	Trace on: to PRINTER
				<@·3> enables printing each line number, prior to execution, onto the printer. The printout is similar to:

							LPRINT USING "######";LINE;

				where LINE is the line number. This format, using six print positions per line number, enables you to control the printout by adjusting the FORMS width prior to using TRON 1.

SINGLE STEPPING
You can single step individual lines of a BASIC program or individual statements within a line. In addition, you can vary the delay in which your program steps between lines or individual statements.

	<@·4>	Single Step off
				<@·4> turns off the single step command and enables the program to run as normal. If the trace command was in use, it will continue to command until turned off via the <@·1> command.

	<@·5>	Single Step to the end of a Line
				<@·5> pauses execution of the BASIC program at the end of each line entered until any key is pressed. The trace to video mode is initiated to show the line numbers being executed. The tracing command can be disabled by the <@·1> command, while the single step mode continues.

	<@·6>	Single Step Statement
				<@·6> pauses execution of the BASIC program at the end of each statement until any key I pressed. The trace to video mode is initiated to show the line numbers being executed. This command can be useful but be wary of using it if a program contains lines such as:

						90 FOR X = 1 TO 100:A(X) = 6++3*X*Z:NEXT X

				To single step statement through this line through this line would require 201 presses of a key. Instead use Single Step to the end of a Line, <@·5>, for this type of line. Reference: BREAK POINTS.

	<@·7>	Single Step with Timed Wait
				<@·7> executes one program line or statement, pauses for a predetermined amount of time, then continues. The trace to video mode is initiated to show the line numbers being executed. <@·5> and <@·6> become sub-commands after the <@·7> command is initiated. Pressing <@·6> after <@·7> is initiated causes the delay to occur at a statement separator, in addition to the beginning of a line. Pressing <@·5> causes the delay to occur at the beginning of a line. To speed up execution (decrease delay [about halves]) press <@·>. To slow down execution (increase delay [about doubles]) press <@·>. The delay has nine settings: approximately 3 milliseconds, 7 milliseconds, 14 milliseconds, 29 milliseconds, 60 milliseconds, 120 milliseconds, 241 milliseconds, 482 milliseconds, and 964 milliseconds at normal CPU speed. When BBASIC is initializes, the setting is approximately 241 milliseconds.

BREAK POINTS
The trace and single step commands previously described can be invoked while a program is running by inserting as many POKE statements into the program where the command is desired. The following codes are used:

Command														POKE 16667				Key equivalent
Trace off															1									<@·1>
Trace on: to VIDEO										2									<@·2>
Trace on: to PRINTER									3									<@·3>
Single Step off												4									<@·4>
Single Step to the end of a Line			5									<@·5>
Single Step Statement									6									<@·6>
Single Step with Timed Wait						7									<@·7>

BACKGROUND ARGUMENT PRINTING is primarily a debugging tool that enables you to print variable values or complex calculations without messing up the display. And all of the MINIDOS commands are available. You can use this ability to save the screen to perform a MINIDOS command and return to the previous display contents intact.

BBASIC (MODEL I and MODEL III)
SUPERBASIC and ESOBASIC (MAX-80, MODEL 4, and ESOTERIC)

You can save contents of the video display, suspend program execution, and select or review argument values. When argument reviewing is complete, the display is restored and execution resumed. If insufficient memory is available to save the contents of the video display, a graphic block (143d) appears in the upper right of the video, and selecting and/or reviewing argument is inhibited.

SELECTING ARGUMENTS

		@N = select arguments - N for New arguments (MODEL I and MODEL III BBASIC)
		CTRLN = select arguments - N for New arguments (MAX-80, MODEL 4, and ESOTERIC)

Pressing CTRLN selects the arguments to print during program execution. This command can be entered at any time, before the program runs or during program execution. After invoking CTRLN, the screen clears and the query 'Maximum length ' is displayed. Respond with the following choices:
		Response		Result___
		<BREAK>			exit and return to BASIC program (previous arguments intact)
		1						1 character argument
		2 or 3			maximum of 3 character argument
		4 ‑ 7				maximum of 7 character argument (default)
		8 ‑ 15			maximum of 15 character argument
		16 ‑ 31			maximum of 31 character argument
		32 ‑ 63			maximum of 63 character argument
		64 ‑ 99			maximum of 127 character argument
		<ENTER>			defaults to maximum of 7 character argument

The maximum number of arguments for review is limited by the length selected:
		Maximum argument length		Maximum number of arguments
					1																128
					3																 64
					7																 32
				 15																 16
				 31																	8
				 63																	4
				127																	2
				255																	1

Please note that the length includes all characters and reserved words are tokenized into one byte: A$(21,5) is eight characters, F(R(3,8)) is nine characters, and LOG(A/(B+C)) is ten characters in length (LOG is one). After successfully entering a length, the message 'Arguments' is displayed and all previously entered arguments are erased. CTRLN accepts anything that can be printed and fits in the argument length.

Once all of the arguments to review are entered, press <BREAK> to continue with the review. If the maximum number of arguments allowed is entered, CTRLO as described next is automatically invoked.

REVIEWING ARGUMENTS

		@O = reviewing arguments - O for Old arguments (MODEL I and MODEL III BBASIC)
		CTRLO = reviewing arguments - O for Old arguments (MAX-80, MODEL 4, and ESOTERIC)

Pressing <CTRLO> during program execution saves the contents of the video display and the message:

		'<C>hange <D>elete <I>nsert <T>op'

appears along with the first argument and its value. Arguments are displayed in the sequence entered with CTRLN. If insufficient memory is available to save the contents of the video display, a graphic block (143d) appears in the upper right of the video, and the program continues.

· Pressing <BREAK> resumes program execution and returns the original video display.
· Pressing <C> erases the last argument displayed, and puts you in an input mode. The new argument and its value are displayed immediately after entered. Remember, the argument is limited in length per the original choice when CTRLN was selected.
· Pressing <D> deletes the last displayed argument.
· Pressing <I> inserts an argument prior to the last displayed argument.
· Pressing <T> clears the display and presents you with the first sequenced argument.
· Pressing any key other than <BREAK>, <C>, <D>, <I>, and/or <T> advances the display to the next argument in sequence.

If an attempt to print an invalid argument, the message 'Redo' is displayed and the <C> command invoked. A valid argument is required to exit from this command. If an element of an array (subscript < 11) is reviewed and the array has not yet been dimensioned by the program, then this array is dimensioned for eleven elements (0‑10). If the program subsequently attempts to dimension this array via a DIM instruction, an error occurs. Therefore, I recommend you dimension all used arrays before review.

CMD"I"			Insert arguments for background printing.

				CMD"I",len;arg;arg;…;arg

				len = maximum length of argument
				arg = argument or variable – each preceded by a semicolon

CMD"I" is a program statement that sequences arguments similar to pressing CTRLN and entering arguments. The maximum number of arguments depends on the length specified; and, if the maximum number of arguments is exceeded, a syntax error results.

MAX-80, MODEL 4, and ESOTERIC
CMD"N" is a program statement with no arguments or parameters that effects a CTRLN. CMD"N" should not be used in the command mode, use CTRLN in command mode.

CMD"O" is a program statement with no arguments or parameters that effects a CTRLO. CMD"O" should not be used in the command mode, use CTRLO in command mode.

STACKING BASIC PROGRAMS (MODEL I and MODEL III)

BASIC programs can be stacked (saved) into high memory while working or running another program. Of course, this ability is limited by the amount of free memory space available. There are five commands for this function.

	<@·->	=	Save the resident BASIC program into high memory
	<@·:>	=	Recall the last saved program from high memory
	<@·0>	=	Recall the next to last saved program from high memory
	<@·9>	=	Append the next to last saved program from high memory to the resident BASIC program
	<@·8>	=	Append the last saved program from high memory to the resident BASIC program

Each of these commands invokes a CLEAR 50 and halts program execution.

Pressing <@·-> saves the resident program into high memory and adjusts memory size to the beginning of the saved program, thus protecting it from BASIC. The original program is intact if memory permits. Subsequent saves can be made as desired because memory size is adjusted. When a program is saved, execution halts and a tall vertical bar (graphic 170d) appears in the upper right corner (relative position 62) of the video display. This is to the right of the line number trace region, indicating a program has been saved into high memory and program is in BASIC program space for your execution or modification. If insufficient memory is available to save a program and maintain it in BASIC's program space, the program is saved and NEW invoked. This condition is indicated by a small block (graphic 130d) in the upper right of the video display.

Pressing <@·:> recalls the last saved program from high memory, overlaying the resident program and adjusting memory size appropriately. If there is no saved program when <@·:> is executed, the error message "Nothing to recall." is displayed.

Pressing <@·0> recalls the next to the last saved program from high memory, overlaying the resident program and adjusting memory size appropriately. <@·0> provides a means to switch the resident program with the last saved program by saving the present program with <@·:>; and, then recall the next to the last saved program with <@·:>. If only one program is saved when <@·0> is executed, the error message "Only one program saved." is displayed.

Pressing <@·9> recalls the next to the last saved program and appends it to the resident program.

Pressing <@·8> recalls the last saved program and appends it to the resident program.

Line number sequence is mandatory for proper execution of the appending commands. The recalled program should have its lowest line number greater that the highest line number if the resident program. The <@·9> and <@·8> commands append, they do not merge.

SUPERBASIC FILE MANIPULATION
MAX-80, MODEL 4, and ESOTERIC
CHAIN				Load and execute a program keeping variable values.

				CHAIN var$[,B]
		or	CHAIN "filespec"[,B]

This command chains programs that are too large to fit into memory. This command loads and executes the file var$ or filespec beginning with the lowest line number as if it were a new BASIC program. Previous variables and their definition remain intact, except for DEFFN arguments. The B option loads and runs the program without closing any file buffer areas. NOTE: SORT/BOL must be on a system disk, mounted in logical drive 0.

KILL				Delete a file from a disk.

				KILL var$
		or	KILL "filespec"

					var$ = a string defined as a filespec.
				 filespec = a file specification for an existing file.

This command deletes a file from the directory. If the statement is within the program, then the file should be closed first. If KILL is executed in the command mode, KILL closes all file buffer areas before it attempts to remove the target filespec.

LOAD				Load a BASIC program from disk into RAM.

				LOAD var$[,B]
		or	LOAD "filespec"[,B]

					var$ = a string defined as a filespec.
				 filespec = a valid BASIC program file name.

This command loads a BASIC program from disk. The B option loads the program without closing any file buffer areas. MAX-80, MODEL 4, and ESOTERIC: LOAD performs a CLEAR 50.

MERGE				Combine two programs in RAM. {changes program}

				MERGE var$
		or	MERGE "filespec"

						var$ = a string defined as a filespec
			 filespec = a BASIC program saved using the ASCII option

This command combines the program currently in RAM with the program lines in var$, and closes all file buffer areas. If a line number in var$ coincides with a line number in the resident program, then the resident line is overwritten. MERGE leaves you in the command mode.

MODEL I and MODEL III
NAME				Load and execute a program keeping most variable values.

				NAME var$[,B]
		or	NAME "filespec"[,B]

This command chains programs that are too large to fit into memory. This command loads and executes the file var$ or filespec beginning with the lowest line number as if it were a new BASIC program. Previous variables and their definition remain intact, except for DEFFN, strings created via READ, and string assignments directly in program text. The B option loads and runs the program without closing any file buffer areas.

RUN					Load a BASIC program and execute.

				RUN var$[,B]
		or	RUN "filespec"[,B]

This command loads a BASIC program from disk and immediately executes the program at the lowest program line. The B option loads and runs the program without closing any file buffer areas. MAX-80, MODEL 4, and ESOTERIC: RUN "filespec" performs a CLEAR 50.

SAVE				Save a BASIC program to disk.

				SAVE var$[,A]
 or	SAVE "filespec"[,A]

					A = save the file in ASCII format

This command transfers the RAM resident BASIC program to disk overwriting filespec if it already exists. If the A option is not specified, the file is saved in compressed format. Compressed format uses less disk space; and, LOADs and SAVEs are faster. The ASCII format, when list from within DOS, is easier to read; and, is used to transfer a BASIC program to another BASIC interpreter that uses different 'tokens' for reserved words.

EXAMPLE:
				SAVE "FKEY/BAS:2",A

	This command saves the file FKEY/BAS, in ASCII format, to logical drive number 2.

NOTE: When you see "filespec" within quotes. The drive number, if part of the filespec, is also enclosed in the quotes. e.g., "PROGMAX/BAS:2". The ':2' is within the double quotes.

SUPERBASIC FILE ACCESS
OPEN				Set the mode and assign a file buffer area to a filespec.

		(1)	OPEN mode, buf, var$
		(2) OPEN mode, buf, var$, udrl

					mode is a string and/or constant, and is one of the following:
						mode		access mode
						 D			RANDOM I/O (direct‑access) to an existing file.
						 E			[EXTEND] SEQUENTIAL OUTPUT to a file.
						 I			SEQUENTIAL INPUT from an existing file.
						 O			[OVERWRITE] SEQUENTIAL OUTPUT to a file.
						 R			RANDOM I/O (direct‑access) to a file.

					buf =	the file buffer area, in the range of 1 to ff, to be assigned to var$. ff is the number of file buffer areas made available during SUPERBASIC initialization.
					var$ =	a string defined as a filespec. e.g., "BUFFER/TXT:2"
					udrl =	user defined record length. If not specified, 256 is used.

EXAMPLES: let N = 2, Q$ = "IOTA", and P$ = "CHECKING/TXT".
				OPEN Q$,N,P$

	Opens the file CHECKING/TXT for sequential input in file buffer area 2.

				OPEN"O",3,"BALANCE/TXT"

	Opens the file BALANCE/TXT, and assigns file buffer area 3 to the file.

RANDOM I/O (direct‑access): If mode = D, udrl is optional because udrl is obtained from the filespec. If mode is R, udrl updates the logical record length of the filespec when the file buffer area is closed. Therefore, you can use R to change the logical record length of a file. If you want to use user defined record lengths, then you must specify V when you initiate BASIC. NOTE: CUSTOM/CMD enables you to modify [B]BASIC[H]/CMD to always initiate with the expanded buffer areas.

EXAMPLES:
				OPEN "D", 4, "TAXES/DAT", 124

	This statement expects the file TAXES/DAT to exist and opens the file using the user defined record length when the file was created. The ',124' is ignored and does not cause an error.

				OPEN "R", 4, "MENU/DAT", 174

	This statement opens the file MENU/DAT if it exists on a mounted disk, or creates the file MENU/DAT if it does not exist. The user defined record length of 174 is used. All access to the file uses 174 as the udrl. If the file MENU/DAT was previously created with a user defined record length other than 174, then the previous udrl is replaced with 174 when the file is closed.

CLOSE				Closes file buffer areas by buffer number.

				CLOSE [#][buf[,buf...]]

					buf =	an expression with a value of 1 to 15. If buf is omitted, all open file buffer areas are closed.

EXAMPLE:
				CLOSE # 3			Close file buffer area 3.
				CLOSE 8,2,4		Close file buffer areas 2, 4, and 8.
				CLOSE T				Close file buffer area equal to the value of T.

In addition to CLOSE, KILL"filespec" in the command mode and the 19 commands and statements that change a program (see the C command) close all file buffer areas.

INPUT#			OPEN"I" read data command.

				INPUT #buf,var[,var...]

					buf = file buffer area 1 to 15.
					var = a variable name to contain the data from the file.

This statement inputs data sequentially from a disk file starting at the beginning of the file. And to INPUT# data successfully, you need to know how the data was placed on the disk. If the data is going to a string variable, BASIC ignores leading spaces, and begins the INPUT# with the first non‑space character. A comma not enclosed in quotes and/or a carriage return (decimal 13) terminates the input assignment. If non‑quoted text is encountered, followed by quoted text, then the quoted text also becomes part of the string variable assignment. If the data is going to a numeric variable, a comma, trailing space, and/or carriage return in the file terminates the variable assignment. The end of file terminates variable assignment also.

EXAMPLE:
				INPUT#2, J, K

Sequentially inputs two numeric items from disk and places them into J and K.

LINE INPUT#	OPEN"I" read a line of text command.

				LINE INPUT #buf,var$

				 buf = file buffer area 1 to 15.
				var$ = the variable name to contain the string.

LINE INPUT# inputs all characters from the current position up to a carriage return (decimal 13), the end of file, and/or 255 characters, whichever comes first. LINE INPUT# differs from INPUT# in that only a carriage return is the terminator. A space is optional between LINE and INPUT#, i.e., LINE INPUT# or LINEINPUT#.

PRINT#			OPEN"O" and OPEN"E" write statement.

				PRINT #buf[USINGformat$;]item[m item...]

					 buf = a file buffer area 1 to 15.
					format = a sequence of field specifiers used with USING.
					 m = a delimiter placed between items.
					 item = an expression to be evaluated and written to the disk.

The delimiter, m, can be a semi‑colon or comma. The use of these delimiters determines the format on the disk. If the comma is used, the items are zoned in 16 byte areas on the disk, just as a PRINT statement zones the data on the display. If the data is string data with punctuation, then the delimiter should be ;CHR$(34);.

EXAMPLE: let X$ = "JONES, TOM", and Y$ = "SMITH, PAUL"
				PRINT#2, CHR$(34);X$;CHR$(34);Y$;CHR$(34)

FIELD				OPEN"D" and OPEN"R" file buffer area organizer.

				FIELD [#]buf,len1 AS str1$[,len2 AS str2$...]
 or	FIELD [#]buf,len1 TO str1$[,len2 TO str2$...]

					buf =	a file buffer area 1 to 15.
		 len1 =	the length of the first field.
		 str$1 =	the variable name of the first field.
		 len2 =	the length of the second field.
		 str$2 =	the variable name of the second field.
					... =	subsequent len TO str$ (len AS str$) pairs for the balance of the buffer area size. The size is determined by the user for created files, or by the file's directory entry for existing files.

NOTE: More than one set of arguments can point to the same file buffer area.

EXAMPLE:
			The data is stored in the following format. The first 64 bytes contain the client's name and address. The next 14 bytes contain the phone number.

			FIELD 1, 56 TO AD$
			FIELD 1, 78 TO AP$, 122 TO HG$

	These statements assigns the first 56 bytes to AD$, the first 78 bytes to AP$, and 122 bytes to HG$. Printing AD$ would print the client's name but not the phone number. However, printing AP$ would print the phone number as well as the address.

MKI$, MKS$, and MKD$	Data converters: numbers to string.

				MKI$ (num)	num is an INTEGER number only.
				MKS$ (num)	num is a SINGLE PRECISION or INTEGER number.
				MKD$ (num)	num is a DOUBLE, SINGLE PRECISION, or INTEGER number.

Numeric data must be converted to strings because all of the data items for a random (direct‑access) file are defined as strings. The length of the string is determined by the precision of the convert function. MKI$ creates a 2 byte string, MKS$ creates a 4 byte string, and MKD$ creates an 8 byte string.

EXAMPLE:
				RSET PAY$ = MKI$(K%)

	This statement converts K% to a two byte string, then RSETs this string into the variable PAY$.

				LSET TAX$ = MKD$(K%*10)

	This statement converts K%*10 into an eight byte string, then LSETs this string into the variable TAX$.

Typically these functions are used after an OPEN, FIELD, and before a PUT statement. See example on next page.

CVI, CVS, and CVD		Data converters: string to numbers.

When reading a random (direct‑access) file, certain string data must be converted back to numeric data because all of the data items for RANDOM I/O are defined as strings. Data conversion is handled using one of the following functions:

				CVI (str$)		str$ must be at least 2 bytes long
				CVS (str$)		str$ must be at least 4 bytes long
				CVD (str$)		str$ must be at least 8 bytes long

EXAMPLE:
				TH%=CVI(WF$): K!=CVS(FR$)‑3

	The string arguments WF$ and FR$ were assigned to a file buffer area via the FIELD statement.

Typically these functions are used after an OPEN, FIELD, and GET statement.

EXAMPLE:
				100 OPEN"D",1,"TEST/DAT"
				110 FIELD 1, 2 TO JK$, 8 TO KL$, 30 TO LM$
				120 GET 1, 1
				130 BYTES! = CVD(KL$)
				140 AGE% = CVI(JK$)
				150 NAME$ = LM$
				160 ...

LSET, RSET	Place data in a RANDOM file buffer area.

				LSET str$ = exp$	RSET str$ = exp$

					str$ = a string variable usually assigned to a file buffer area via FIELD
					exp$ = the assignment for str$

EXAMPLE:
				LSET WF$ = MKI$(J%)
				RSET DR$ = B$ + C$

LSET left justifies the data and RSET right justifies the data. LSET and RSET do not increase the length of str$. If exp$ is longer than str$, then the characters to the right are truncated.

LSET and/or RSET assigns exp$ to str$ even if str$ is not a FIELD variable.

EXAMPLE:
				10 A$ = "TESTING"
				20 LSET A$ = "MULTIDOS"

	After this program is run, the listing is:

				10 A$ = "MULTIDO"
				20 LSET A$ = "MULTIDOS"

Remember, the length of str$ is not increased. If str$ is not defined (length = 0) when an LSET and/or RSET statement is encountered, then the LSET and/or RSET statement simply uses space.

Typically these functions are used after an OPEN, FIELD, and before a PUT statement.

EXAMPLE:
				100 OPEN"R",1,"TEST/DAT",40
				110 FIELD 1, 2 TO FD$, 8 TO MD$, 30 TO XR$
				120 INPUT "What is your age";AG
				130 INPUT "What is your name";NM$
				140 PRINT "OK ";NM$;", How many bytes can a Z80 address";
				150 INPUT BT!
				160 PRINT "I will keep a record of this data"
				170 F$=MKI$(AG)
				180 LSET FD$ = F$
				190 LSET MD$ = MKD$(BT!)
				200 LSET XR$ = NM$
				210 PUT 1,1

PUT					RANDOM write statement.

				PUT [#]buf[,rec]

				buf =	a file buffer area 1 to 15.
				rec =	the record number MAX-80, MODEL 4, and ESOTERIC: 1 to 65535
							or MODEL I and MODEL III: 1 to 32767 and -32768 to -1.
 							If rec is omitted, then the current record is used. The current record is one unit greater than the last record written.

The PUT statement moves data from the file buffer area to a specified record in a file. Each PUT statement writes to a file if the record length is 256 bytes. However, if record length other than 256 is used, (only possible using the V option at BASIC initialization), then BASIC waits until the buffer is full before a write is executed.

			OPEN"R",1,"POKER/TXT",67.

If PUT statements were to write records 1, 2, 3, and 4 in this sequence, then it would take 4 PUT statements before a write is made to the file. The PUT statement requires the following actions to occur before a write:

 1.	OPEN a file, using modes "R", or "D", assigning a buffer area for I/O.
 2.	FIELD the buffer, assigning str$ to specific positions in the buffer.
 3. 	LSET or RSET the data into the buffer area. The converting of numeric data to string data (MKI$, MKS$, or MKD$) can take place prior to the LSET or RSET statements and/or the conversion can take place during the LSET and RSET statements.
 4.	PUT the data into the record via PUT buf[,rec].

If the record number in the PUT statement is greater than the number of records in the file, then the PUT statement increases the file by the necessary length to accommodate the record.

EXAMPLE:
				100 OPEN"R",1,"TEST/DAT",40
				110 FIELD 1, 2 TO FD$, 8 TO MD$, 30 TO XR$
				120 INPUT "What is your age";AG
				130 INPUT "What is your name";NM$
				140 PRINT "OK ";NM$;", How many bytes can a Z80 address";
				150 INPUT BT!
				160 PRINT "I will keep a record of this data"
				170 F$=MKI$(AG)
				180 LSET FD$ = F$
				190 LSET MD$ = MKD$(BT!)
				200 LSET XR$ = NM$
				210 PUT 1,1

GET					RANDOM read statement.

				GET [#]buf[,rec]

				buf =	a file buffer area 1 to 15.
				rec =	the record number MAX-80, MODEL 4, and ESOTERIC: 1 to 65535
							or MODEL I and MODEL III: 1 to 32767 and -32768 to -1.
							If rec is omitted, then the current record is used. The current record is one unit greater than the last record read.

The GET statement reads data from the file to the file buffer area, reading sectors as necessary if the logical record length is less than 256. The GET statement requires the following to occur before a read:

	1. OPEN the file (OPEN"R",buf,filespec[,udrl] or OPEN"D",buf,filespec)
	2. FIELD the buffer area (FIELD buf, 8 TO X$, 23 TO Y$, ...)
	3. GET the record
	4. CVI, CVS, CVD as necessary.

EXAMPLE:
				100 OPEN"D",1,"TEST/DAT"
				110 FIELD 1, 2 TO JK$, 8 TO KL$, 30 TO LM$
				120 GET 1, 1
				130 BYTES! = CVD(KL$)
				140 AGE% = CVI(JK$)
				150 NAME$ = LM$
				160 ...

EOF					End of file detector.

				EOF (buf)

This function returns a zero (false) if the end of file has not been read. Otherwise a ‑1 (true) is returned. EOF(n) is true if LOC(n) = LOF(n).

LOC					File location indicator.

				LOC (buf)

This function returns the current record read for OPEN"D" and OPEN"R". For OPEN"I", LOC returns the sector read (physical records).

LOF					Last record indicator.

				LOF (buf)

This function returns the highest logical record for OPEN"D" and OPEN"R". For OPEN"I", LOF returns the highest physical record (sector).

ERR/ERROR CODES and ERROR MESSAGES

 ERR				ERROR			 MESSAGE _
 0					 1				NEXT without FOR.
 2					 2				Syntax error.
 4					 3				RETURN without GOSUB.
 6					 4				Out of DATA.
 8					 5				Improper parameter used.
 10					 6				Overflow.
 12					 7				Insufficient MEMORY.
 14					 8				Line number non‑existent.
 16					 9				Subscript undefined.
 18					10				Redimensioned array.
 20					11				Division by zero.
 22					12				Misuse of "INPUT". (MODEL I and MODEL III)
 22					12				Undefined USR function. (MAX-80, MODEL 4, and ESOTERIC)
 24					13				Assignment mismatch.
 26					14				Insufficient string space.
 28					15				String is longer than 255 bytes.
 30					16				String operation too complex.
 32					17				Cannot continue.
 34					18				No RESUME.
 36					19				RESUME without error.
 38					20				Undefined error.
 40					21				Missing operand.
 42					22				Bad file data. (MODEL I and MODEL III)
 42					22				EXIT without FOR. (MAX-80, MODEL 4, and ESOTERIC)
 44					23				User abort.
 46					24				Incorrect dimension cardinality. (MAX-80, MODEL 4, and ESOTERIC)
 48‑98			25‑50			Undefined error.
100					51				Field organization exceeded the LRL.
102					52				Disk I/O error, use CMD"E" for specific.
104					53				The buffer number is not available.
106					54				File is not in specified directory.
108					55				Incorrect file mode.
110					56				File buffer previously assigned.
112					57				Disk read error, use CMD"E" for specific.
114					58				Disk write error, use CMD"E" for specific.
116					59				Incorrect password used to access file.
118					60				EOF encountered.
120					61				Drive not available.
122					62				Disk space full.
124					63				EOF reached before any characters read.
126					64				Attempted to access record ZERO.
128					65				Improper file name.
130					66				Access mode differs from OPEN mode.
132					67				I/O buffer overflow.
134					68				Directory space full.
136					69				Write protected media.
138					70				Access attempted to protected file.
140					71				Full directory. The file cannot be extended.
142					72				The buffer has not been assigned.
144					73				Undefined function.
146					74				File not found.
148					75				Sequence overlaps.
150 up			76 up			Undefined error.

MODEL I and MODEL III ERROR values above 23 cannot be simulated with ERROR code.

ERROR MESSAGE DEFINITIONS

Access attempted to protected file.
	ACCESS password given, but UPDATE password required.

Access mode differs from open mode.
	The usage of "PRINT#" with a buffer opened by mode "D", "I", and/or "R".
	The usage of "INPUT#" with a buffer opened by mode "D", "E", "O", and/or "R".
	An attempt to PUT or GET to a file opened by mode "E", "I", and/or "O".

Assignment mismatch.
	An attempt to assign a string expression to a non‑string variable.
	An attempt to use a string variable as a numeric variable.
	An attempt to assign a numeric expression to a string variable.
	An attempt to use a numeric variable as a string variable.

Attempted to access record ZERO.
	The record number via PUT and/or GET is evaluated as being zero.

Bad file data.
	The tape data does not match the variable (Assignment mismatch) or is unreadable.

Cannot continue.
	An attempt to continue program execution after a CLEAR is invoked ‑ directly and/or indirectly.

Directory space full.
	All DIREC slots are used. See ZAP/CMD for DIREC detail.

Division by zero.
	In division, the denominator and/or the divisor is evaluated as zero.

Disk I/O error, use CMD"E" for specific.
	Use CMD"E", then refer to the DOS error message definitions.

Disk read error, use CMD"E" for specific.
	Use CMD"E", then refer to the DOS error message definitions.

Disk write error, use CMD"E" for specific.
	Use CMD"E", then refer to the DOS error message definitions.

Disk space full.
	The file being saved or updated requires more disk space than available.

Drive not available.
	The DCT entry is NULL, and/or a disk is not rotating in the specified drive.

EOF encountered.
	An attempt to CHAIN, LOAD, and/or RUN an empty file.
	A GET to a user defined record length file which extends beyond the file size (the file size is not an exact multiple of the logical record length).

EOF reached before any characters read.
	An attempt to input beyond the end of a sequential file.

EXIT without FOR.
	EXIT is used without any FOR‑NEXT loops active. (CLEARn nullifies all FOR‑NEXT loops.)

Field organization exceeds the logical record length.
	The sum of the "len"'s for the "len TO str$" ("len AS str$") pairs in a FIELD statement is greater than the logical record length of the file.

File buffer previously assigned.
	The file buffer number is already assigned to another file. The file you are trying to open may or may not be the same filespec.

File is not in specified directory.
	Filespec not found on disk in logical drive specified. This error is only displayed when the drive number is part of the filespec and the file is not on the specified logical disk.

File not found.
	Filespec is not on any mounted disk.

Full directory. File cannot be extended.
	A file is being expanded and requires an extended directory entry; however, there are no more DIREC slots available.

I/O buffer overflow.
	More than 255 characters encountered since the last terminator while loading a program stored in ASCII format. Or a line number is not after the last terminator. Terminators for ASCII files are 00H and 0DH.

Improper file name.
	A null filespec.
	The filespec exceeded 24 characters (filename/ext.password:d' = 24).
	Filespec syntax incorrect. e.g., LOAD"(/':)"

Improper parameter used.
	An attempt to use an out of range argument.
	An attempt to dimension (DIM) and/or access an array with a negative subscript.

Incorrect dimension cardinality.
	An attempt to access an array with a dimension that is different from then number of dimensions the array was dimensioned. i.e., 10 DIM A(3,4) … 120 A(1,3,5) = BB

Incorrect file mode.
	An attempt to open a file without using "D", "E", "I", "O" and/or "R".
	An attempt to open a random file with the logical record length not equal to 256, and the "V" option was not specified when SUPERBASIC initialized to allocate the additional 256 bytes for the file buffer area.
	An attempt to FIELD a file buffer area and the file was opened via "E", "I", and/or "O".
	An attempt to MERGE a file saved in compressed format (not saved via "filespec",A).

Incorrect password used to access file.
	A file is password protected and the incorrect password given.

Insufficient MEMORY.
	Insufficient MEMORY available to execute the statement or command.
	An attempt to DIM an array that requires more memory than available.

Insufficient string space.
	The operation requires more string space than the amount allocated.
	(MAX-80, MODEL 4, and ESOTERIC: you can issue a CLEARn then continue the program.)

Line number non‑existent.
	A statement contains a reference to a line and/or "label" that is not in the program text.

Missing operand.
	An operator was encountered without a necessary operand following.

Misuse of "INPUT".
	An INPUT statement was keyed in the command mode.

NEXT without FOR.
	A NEXT statement without a corresponding FOR statement. (CLEARn nullifies all FOR‑NEXT loops.)

No RESUME.
	The program naturally terminated with error‑trapping active.

Out of DATA.
	A READ attempt without sufficient DATA items.

Overflow.
	An attempt to assign a value greater than 32767 or less than ‑32768 to an integer variable.
	An attempt to evaluate an expression, even interim results, to an absolute value that is greater than 1.70141E38 in single-precision and/or an absolute value that is greater than 1.701411834604692D38 in double-precision.
	An attempt to renumber a program where a new number would exceed the maximum line number allowed.

Redimensioned Array.
	An attempt to dimension an array previously dimensioned ‑ by a previous DIM statement or by default (11).

RESUME without error.
	A RESUME was encountered without a current ON ERROR GOTO active.

RETURN without GOSUB.
	A RETURN was encountered without a GOSUB active.

Sequence Overlaps.
	An attempt to renumber a program where the new sequence would create a line number equal to an existing line number that is not being re-sequenced; or, create a line number higher than a line number that is not being re-sequenced.

String is longer than 255 bytes.
[bookmark: OLE_LINK5][bookmark: OLE_LINK6]	An attempt to concatenate strings with a combined length greater than 255 characters.

String operation too complex.
	More than ten sub‑string operations pending. Simplify the string statement.

Subscript undefined.
	An attempt to access an array element undefined by the DIM statement.

Syntax error.
	A variable with a reserved word embedded. (DISTANCE, CLOCK, VERIFY)
	Missing and/or wrong punctuation.
	Misspelled reserved word.

The buffer has not been assigned.
	An attempt to access a file buffer area not assigned to a file.

The buffer number is not available.
	The buffer number is less than one and/or greater than 15.
	An attempt to access a file buffer area greater than the number specified when SUPERBASIC initialized.

Undefined function.
	An attempt is made to execute a FN statement and the specified function was not previously defined.

Undefined user function.
	An attempt is made to execute a USR statement and the specified USR number was not defined via DEFUSR.

User abort.
	A deliberate error produced by ERROR 23. This is used for debugging.

Write protected media.
	An attempt to write to a write protected disk.

RESERVED WORDS in MAX-80, MODEL 4 and ESOTERIC BASIC (in alphabetical order)

SUPERBASIC
SUPERBASIC

Page 118
Page 119
Word	Dec	Hex
'	251	FB
*	207	CF
+	205	CD
-	206	CE
/	208	D0
<	214	D6
=	213	D5
>	212	D4
ABS	217	D9
AND	210	D2
ASC	246	F6
ATN	228	E4
BIN$	254	FE
CALL	174	AE
CDBL	241	F1
CHAIN	169	A9
CHR$	247	F7
CINT	239	EF
CLEAR	184	B8
CLOSE	166	A6
CLS	132	84
CMD	133	85
COS	225	E1
CSNG	240	F0
CVD	232	E8
CVI	230	E6
CVS	231	E7
DATA	136	88
DEF	176	B0
DEFDBL	155	9B
DEFINT	153	99
DEFSNG	154	9A

Word	Dec	Hex
DEFSTR	152	98
DIM	138	8A
ELSE	149	95
END	128	80
EOF	233	E9
ERASE	182	B6
ERL	194	C2
ERR	195	C3
ERROR	158	9E
EXIT	179	B3
EXP	224	E0
FIELD	163	A3
FIX	242	F2
FN	190	BE
FOR	129	81
FRE	218	DA
GET	164	A4
GOSUB	145	91
GOTO	141	8D
HEX$	252	FC
HR or WC	185	B9
IF	143	8F
INKEY$	201	C9
INP	219	DB
INPUT	137	89
INSTR	197	C5
INT	216	D8
KILL	170	AA
LABEL	186	BA
LEFT$	248	F8
LEN	243	F3
LINE	156	9C

Word	Dec	Hex
LIST	180	B4
LLIST	181	B5
LOAD	167	A7
LOC	234	EA
LOF	235	EB
LOG	223	DF
LPRINT	175	AF
LSET	171	AB
MEM	200	C8
MERGE	168	A8
MID$	250	FA
MKD$	238	EE
MKI$	236	EC
MKS$	237	ED
NEW	187	BB
NEXT	135	87
NOT	203	CB
ON	161	A1
OPEN	162	A2
OR	211	D3
OUT	160	A0
PEEK	229	E5
POINT	198	C6
POKE	177	B1
POS	220	DC
PRINT	178	B2
PUT	165	A5
RANDOM	134	86
READ	139	8B
REM	147	93
RESET	130	82
RESTORE	144	90

Word	Dec	Hex
RESUME	159	9F
RETURN	146	92
RIGHT$	249	F9
RND	222	DE
ROW	255	FF
RSET	172	AC
RUN	142	8E
SAVE	173	AD
SET	131	83
SGN	215	D7
SIN	226	E2
SORT	157	9D
SOUND	140	8C
SQR	221	DD
STEP	204	CC
STOP	148	94
STR$	244	F4
STRING$	196	C4
TAB(188	BC
TAN	227	E3
THEN	202	CA
TIME$	199	C7
TO	189	BD
TROFF	151	97
TRON	150	96
USING	191	BF
USR	193	C1
VAL	245	F5
VARPTR	192	C0
WPEEK	253	FD
ZERO	183	B7
[209	D1

